打字猴:1.70000236e+09
1700002360
1700002361 Russell MJ, Hall AJ, Martin W. Serpentinization as a source of energy at the origin of life. Geobiology8: 355–71 (2010).
1700002362
1700002363 Sleep NH, Bird DK, Pope EC. Serpentinite and the dawn of life. Philosophical Transactions Royal Society B366: 2857–69 (2011).
1700002364
1700002365 冥古宙的海洋化学
1700002366
1700002367 Arndt N, Nisbet E. Processes on the young earth and the habitats of early life. Annual Reviews Earth Planetary Sciences40: 521–49 (2012).
1700002368
1700002369 Pinti D. The origin and evolution of the oceans. Lectures Astrobiology1: 83–112 (2005).
1700002370
1700002371 Russell MJ, Arndt NT. Geodynamic and metabolic cycles in the Hadean. Biogeosciences2: 97–111 (2005).
1700002372
1700002373 Zahnle K, Arndt N, Cockell C, Halliday A, Nisbet E, Selsis F, Sleep NH. Emergence of a habitable planet. Space Science Reviews129: 35–78 (2007).
1700002374
1700002375 热 泳
1700002376
1700002377 Baaske P, Weinert FM, Duhr S, et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings National Academy Sciences USA104: 9346–51 (2007).
1700002378
1700002379 Mast CB, Schink S, Gerland U, Braun D. Escalation of polymerization in a thermal gradient. Proceedings National Academy Sciences USA110: 8030–35 (2013).
1700002380
1700002381 碱性喷口环境有机合成的热力学
1700002382
1700002383 Amend JP, McCollom TM. Energetics of biomolecule synthesis on early Earth. In Zaikowski L et al. eds. Chemical Evolution II: From the Origins of Life to Modern Society. American Chemical Society (2009).
1700002384
1700002385 Ducluzeau A-L, Schoepp-Cothenet B, Baymann F, Russell MJ, Nitschke W. Free energy conversion in the LUCA: Quo vadis? Biochimica et Biophysica Acta Bioenergetics1837: 982–988 (2014).
1700002386
1700002387 Martin W, Russell MJ. On the origin of biochemistry at an alkaline hydrothermal vent. Philosophical Transactions Royal Society B367: 1887–1925 (2007).
1700002388
1700002389 Shock E, Canovas P. The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids10: 161–92 (2010).
1700002390
1700002391 Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions Royal Society B368: 20130088 (2013).
1700002392
1700002393 还原电位与二氧化碳还原反应的动力学障壁
1700002394
1700002395 Lane N, Martin W. The origin of membrane bioenergetics. Cell 151: 1406–16 (2012).
1700002396
1700002397 Maden BEH. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochemical Journal350: 609–29 (2000).
1700002398
1700002399 Wächtershäuser G. Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology10: 207–10 (1988).
1700002400
1700002401 天然质子梯度能驱动二氧化碳还原反应吗?
1700002402
1700002403 Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700002404
1700002405 Herschy B. Nature’s electrochemical flow reactors: Alkaline hydrothermal vents and the origins of life. Biochemist36: 4–8 (2014).
1700002406
1700002407 Lane N. Bioenergetic constraints on the evolution of complex life. Cold Spring Harbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 (2014).
1700002408
1700002409 Nitschke W, Russell MJ. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo, Co, S and Se forced life to emerge. Journal of Molecular Evolution69: 481–96 (2009).
[ 上一页 ]  [ :1.70000236e+09 ]  [ 下一页 ]