打字猴:1.700002999e+09
1700002999 Wujek DE. Intracellular bacteria in the blue-green-alga Pleurocapsa minor. Transactions American Microscopical Society98: 143–45 (1979).
1700003000
1700003001 Yamaguchi M, Mori Y, Kozuka Y, et al. Prokaryote or eukaryote? A unique organism from the deep sea. Journal of Electron Microscopy61: 423–31 (2012).
1700003002
1700003003
1700003004
1700003005
1700003006 复杂生命的起源 [:1700000024]
1700003007 复杂生命的起源 图片来源
1700003008
1700003009 图1: A tree of life showing the chimeric origin of complex cells. Reproduced with permission from: Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays21: 99–104 (1999).
1700003010
1700003011 图2: A timeline of life.
1700003012
1700003013 图3: The complexity of eukaryotes. Reproduced with permission from: (A) Fawcett D. The Cell. WB Saunders, Philadelphia (1981). (B) courtesy of Mark Farmer, University of Georgia. (C) courtesy of Newcastle University Biomedicine Scientific Facilities; (D) courtesy of Peter Letcher, University of Alabama.
1700003014
1700003015 图4: The Archezoa – the fabled (but false) missing link. Reproduced with permission from: (A) Katz LA. Changing perspectives on the origin of eukaryotes. Trends in Ecology and Evolution13: 493–497 (1998). (B) Adam RD, Biology of Giardia lamblia. Clinical Reviews in Microbiology14: 447–75 (2001).
1700003016
1700003017 图5: The ‘supergroups’ of eukaryotes. Reproduced with permission from: Koonin EV. The incredible expanding ancestor of eukaryotes. Cell 140: 606–608 (2010).
1700003018
1700003019 图6: The black hole at the heart of biology. Photomicrograph reproduced with permission from: Soh EY, Shin HJ, Im K. The protective effects of monoclonal antibodies in mice from Naegleria fowleri infection. Korean Journal of Parasitology. 30: 113–123 (1992).
1700003020
1700003021 图7: Structure of a lipid membrane. Reproduced with permission from: Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720–31 (1972).
1700003022
1700003023 图8: Complex I of the respiratory chain. Reproduced with permissions from: (A) Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophiles. Science 311: 1430–1436 (2006). (B) Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 494: 443–48 (2013). (C). Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 515: 80–84 (2014).
1700003024
1700003025 图9: How mitochondria work. Photomicrograph reproduced with permission from: Fawcett D. The Cell. WB Saunders, Philadelphia (1981).
1700003026
1700003027 图10: Structure of the ATP synthase. Reproduced with permission from: David S Goodsell. The Machinery of Life. Springer, New York (2009).
1700003028
1700003029 图11: Iron-sulphur minerals and iron-sulphur clusters. Modified with permission from: Russell MJ, Martin W. The rocky roots of the acetyl CoA pathway. Trends in Biochemical Sciences29: 358063 (2004).
1700003030
1700003031 图12: Deep-sea hydrothermal vents. Photographs reproduced with permission from Deborah S Kelley and the Oceanography Society; from Oceanography18 September 2005.
1700003032
1700003033 图13: Extreme concentration of organics by thermophoresis. Reproduced with permission from: (a-c) Baaske P, Weinert FM, Duhr S, et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings National Academy Sciences USA104: 9346–9351 (2007). (d) Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700003034
1700003035 图14: How to make organics from H2 and CO2. Reproduced with permission from: Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700003036
1700003037 图15: The famous but misleading three-domains tree of life. Modified with permission from: Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings National Academy Sciences USA87: 4576–4579 (1990).
1700003038
1700003039 图16: The ‘amazing disappearing tree’. Reproduced with permission from: Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions Royal Society B368: 20130088 (2013).
1700003040
1700003041 图17: A cell powered by a natural proton gradient. Modified with permission from: Sojo V, Pom-iankowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biology12(8): e1001926 (2014).
1700003042
1700003043 图18: Generating power by making methane.
1700003044
1700003045 图19: The origin of bacteria and archaea. Modified with permission from: Sojo V, Pomian-kowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biology12(8): e1001926 (2014).
1700003046
1700003047 图20: Possible evolution of active pumping.
1700003048
[ 上一页 ]  [ :1.700002999e+09 ]  [ 下一页 ]