1700003008
1700003009
图1: A tree of life showing the chimeric origin of complex cells. Reproduced with permission from: Martin W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. BioEssays21: 99–104 (1999).
1700003010
1700003011
图2: A timeline of life.
1700003012
1700003013
图3: The complexity of eukaryotes. Reproduced with permission from: (A) Fawcett D. The Cell. WB Saunders, Philadelphia (1981). (B) courtesy of Mark Farmer, University of Georgia. (C) courtesy of Newcastle University Biomedicine Scientific Facilities; (D) courtesy of Peter Letcher, University of Alabama.
1700003014
1700003015
图4: The Archezoa – the fabled (but false) missing link. Reproduced with permission from: (A) Katz LA. Changing perspectives on the origin of eukaryotes. Trends in Ecology and Evolution13: 493–497 (1998). (B) Adam RD, Biology of Giardia lamblia. Clinical Reviews in Microbiology14: 447–75 (2001).
1700003016
1700003017
图5: The ‘supergroups’ of eukaryotes. Reproduced with permission from: Koonin EV. The incredible expanding ancestor of eukaryotes. Cell 140: 606–608 (2010).
1700003018
1700003019
图6: The black hole at the heart of biology. Photomicrograph reproduced with permission from: Soh EY, Shin HJ, Im K. The protective effects of monoclonal antibodies in mice from Naegleria fowleri infection. Korean Journal of Parasitology. 30: 113–123 (1992).
1700003020
1700003021
图7: Structure of a lipid membrane. Reproduced with permission from: Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science 175: 720–31 (1972).
1700003022
1700003023
图8: Complex I of the respiratory chain. Reproduced with permissions from: (A) Sazanov LA, Hinchliffe P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophiles. Science 311: 1430–1436 (2006). (B) Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 494: 443–48 (2013). (C). Vinothkumar KR, Zhu J, Hirst J. Architecture of mammalian respiratory complex I. Nature 515: 80–84 (2014).
1700003024
1700003025
图9: How mitochondria work. Photomicrograph reproduced with permission from: Fawcett D. The Cell. WB Saunders, Philadelphia (1981).
1700003026
1700003027
图10: Structure of the ATP synthase. Reproduced with permission from: David S Goodsell. The Machinery of Life. Springer, New York (2009).
1700003028
1700003029
图11: Iron-sulphur minerals and iron-sulphur clusters. Modified with permission from: Russell MJ, Martin W. The rocky roots of the acetyl CoA pathway. Trends in Biochemical Sciences29: 358063 (2004).
1700003030
1700003031
图12: Deep-sea hydrothermal vents. Photographs reproduced with permission from Deborah S Kelley and the Oceanography Society; from Oceanography18 September 2005.
1700003032
1700003033
图13: Extreme concentration of organics by thermophoresis. Reproduced with permission from: (a-c) Baaske P, Weinert FM, Duhr S, et al. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings National Academy Sciences USA104: 9346–9351 (2007). (d) Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700003034
1700003035
图14: How to make organics from H2 and CO2. Reproduced with permission from: Herschy B, Whicher A, Camprubi E, Watson C, Dartnell L, Ward J, Evans JRG, Lane N. An origin-of-life reactor to simulate alkaline hydrothermal vents. Journal of Molecular Evolution79: 213–27 (2014).
1700003036
1700003037
图15: The famous but misleading three-domains tree of life. Modified with permission from: Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings National Academy Sciences USA87: 4576–4579 (1990).
1700003038
1700003039
图16: The ‘amazing disappearing tree’. Reproduced with permission from: Sousa FL, Thiergart T, Landan G, Nelson-Sathi S, Pereira IAC, Allen JF, Lane N, Martin WF. Early bioenergetic evolution. Philosophical Transactions Royal Society B368: 20130088 (2013).
1700003040
1700003041
图17: A cell powered by a natural proton gradient. Modified with permission from: Sojo V, Pom-iankowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biology12(8): e1001926 (2014).
1700003042
1700003043
图18: Generating power by making methane.
1700003044
1700003045
图19: The origin of bacteria and archaea. Modified with permission from: Sojo V, Pomian-kowski A, Lane N. A bioenergetic basis for membrane divergence in archaea and bacteria. PLOS Biology12(8): e1001926 (2014).
1700003046
1700003047
图20: Possible evolution of active pumping.
1700003048
1700003049
图21: The remarkable chimerism of eukaryotes. Reproduced with permission from: Thiergart T, Landan G, Schrenk M, Dagan T, Martin WF. An evolutionary network of genes present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin. Genome Biology and Evolution4: 466–485 (2012).
1700003050
1700003051
图22: Two, not three, primary domains of life. Reproduced with permission from: Williams TA, Foster PG, Cox CJ, Embley TM. An archaeal origin of eukaryotes supports only two primary domains of life. Nature504: 231–236 (2013).
1700003052
1700003053
图23: Giant bacteria with ‘extreme polyploidy’. (A) and (B) reproduced with permission from Esther Angert, Cornell University; (C) and (D) by courtesy of Heide Schulz-Vogt, Leibnitz Institute for Baltic Sea Research, Rostock. In: Lane N, Martin W. The energetics of genome complexity. Nature467: 929–934 (2010); and Schulz HN. The genus Thiomargarita. Prokaryotes6: 1156–1163 (2006).
1700003054
1700003055
图24: Energy per gene in bacteria and eukaryotes. Original data from Lane N, Martin W. The energetics of genome complexity. Nature467: 929–934 (2010); modified in Lane N. Bioenergetic constraints on the evolution of complex life. Cold SpringHarbor Perspectives in Biology doi: 10.1101/cshperspect.a015982 CSHP (2014).
1700003056
1700003057
图25: Bacteria living within other bacteria. Reproduced with permission from: (Top) Wujek DE. Intracellular bacteria in the blue-green-alga Pleurocapsa minor. Transactions of the American Microscopical Society98: 143–145 (1979). (Bottom) Gatehouse LN, Sutherland P, Forgie SA, Kaji R, Christellera JT. Molecular and histological characterization of primary (beta-proteobacteria) and secondary (gamma-proteobacteria) endosymbionts of three mealybug species. Applied Environmental Microbiology78: 1187 (2012).
[
上一页 ]
[ :1.700003008e+09 ]
[
下一页 ]