1700243380
我要把这个问题分成3个小问题:为什么基因要组成细胞?为什么细胞们要组成多细胞生物?为什么生物采纳“瓶颈”般的生命循环?
1700243381
1700243382
首先,为什么基因要组成细胞?为什么那些原始复制因子放弃在“原始汤”中享受自由自在的骑士生活,而选择在巨大群落里举步维艰地生存?为什么它们选择了合作?我们可以从观察现代DNA分子在活细胞的“化学工厂”里的合作方式找到部分答案。DNA分子制造蛋白质,后者则以酶的作用方式催化特定的化学反应。通常,单独一个化学反应并不足以合成有用的人体最终产品,人体的“制药工厂”需要生产线。最初的化学物质并不直接转化为所需的最终产品,这中间需要经过一系列有严格次序的合成步骤。化学研究者的聪明才智大多花费在为起始化学物质与最终产品间设计合理的中间步骤。同样,活细胞中一个单独的酶也无法凭自身力量将最初给定的化学物质合成为有用的最终产品。这个过程需要一整套蛋白酶,由第一种酶将原材料催化转化为第一个中间产品,第二种酶将第一个中间产品催化转化为第二个中间产品,以此接力继续。
1700243383
1700243384
每种蛋白酶都由一个基因制造而成。如果一个合成过程需要6种系列蛋白酶,则必须有6个基因存在以制造它们。这样就有可能出现两条都可以制得相同产品的不同合成路线,每条路线分别需要6种不同蛋白酶,两条路线之间无法混合选择,这种事情在化学工厂里经常发生。大家可能会因为历史偶然原因而选择某一条路线,或者化学家会对某一条路线有更精心的设计。在自然界的化学工厂中,这种选择从来不会被“精心设计”。相反,它完全由自然选择决定。这两个路线并不混合,每一路线中的基因互相合作,彼此适应。自然选择如何看待这个问题呢?这跟我在第5章做的比喻“德国与英国的桨手”很是类似。最重要的是第一路线的基因可以在其路线中其他基因存在的前提下繁荣生长,而对第二路线的基因视而不见。如第一路线的基因已经占据了群体中的大多数位子,自然选择便会偏向第一路线,而惩罚第二路线的基因,反之亦然。如果说第二路线中的6种蛋白酶是以“群体”而被选择,则大错特错,虽然这种说法很是诱人。每一种蛋白酶都作为一个单独的、自私的基因被选择,但它只能在其他同组基因存在的情况下才能生长繁荣。
1700243385
1700243386
现在这种基因间的合作可以延伸到细胞之间。这一定始于“原始汤”中(或者其他什么原始媒介中)自我复制因子间的基本合作。细胞膜也许是作为保持有效化学物质、防止它们渗漏的介质而出现的。细胞中的许多化学反应事实上发生在细胞膜内,细胞膜起到传输带和试管架的作用。但基因间的合作并不止于细胞生化。细胞们走到一起(或者在结合后无法分离),形成了多细胞生物。
1700243387
1700243388
这便将我们带到第二个问题:为什么细胞们组合到一起?这是合作的另一个问题,这将我们的讨论从分子世界带到一个更大的范围里。多细胞生物已经不适用于显微镜的范围了,我们这里讲的对象甚至可以是大象或蓝鲸。大并不一定是好事,细菌在生物界中的数目比大象要多得多。但当小型生物用尽其所能的生活方式,尺寸大一些的生物可能还有繁荣的空间。比如,体形大的生物可以吃小动物,还可以防止被它们吃。
1700243389
1700243390
细胞结合的好处并不止于体形上的优势。这些细胞结合可以发挥其专有特长,每一个部件在处理其特定任务时就可以更有效率。有专长的细胞在群体里为其他细胞服务,同时也可以从其他有专长的细胞的高工作效率中得益。如果群体中有许多细胞,有一些可以成为感觉器官以发现猎物,一些可以成为神经以传递信息,还有一些可以成为刺细胞以麻醉猎物,成为肌肉细胞移动触须以捕捉猎物,成为分泌细胞消化猎物,还有其他细胞可以吸收汁水。我们不能忘记,至少在像你我这样的现代生物中,细胞其实是克隆所得的,它们都拥有相同的基因。但不同的基因可以成为不同的专长细胞,每一种细胞中的基因都可以从少数专长复制的细胞中得到直接利益,形成不朽的生殖细胞系。
1700243391
1700243392
那么,第三个问题:为什么生物体参与“瓶颈”般的生命循环?
1700243393
1700243394
先解释一下我对“瓶颈”的定义。无论大象体内有多少细胞,大象的生命都始于一个单独的细胞——一个受精卵。这个受精卵便是一条狭窄的“瓶颈”,在胚胎发育中逐渐变宽,成为拥有成千上万细胞的成年大象。而无论成年大象需要多少细胞,或者多少种专长细胞来合作完成极其复杂的生物任务,所有这些细胞的艰苦工作都会汇聚成最终目标——再次制造单细胞:精子或卵子。大象不仅始于受精卵这一单细胞,它的最终目标也是为下一代制造受精卵这一单细胞。这只巨大笨重的大象,生命循环的起始都在于狭窄的“瓶颈”。这个瓶颈是所有多细胞动植物在生命循环中的共同特征。这是为什么呢?它的重要性在哪里?在回答这个问题前,我们必须考虑一下,如果生命没有这个“瓶颈”,会是怎样的情况。
1700243395
1700243396
让我们先想象两种虚拟的海藻,姑且称它们为“瓶藻”和“散藻”。海里的散藻有杂乱无章的枝叶,这些枝叶时不时断落并漂浮离去。这种断落可以发生在植物的任何部位,碎片可大可小。正如我们在花园里剪去植物的枝叶一样,散藻可以像断枝的正常植物一样重新生长。掉落枝叶其实是一种繁殖的方法。你将会注意到,这其实和生长并不是特别不同,只是生长的部位并不与原来的植物相连接而已。
1700243397
1700243398
瓶藻和散藻看起来同样杂乱无章,但却有着一个重要的不同处:它繁殖的方式是释放单细胞孢子,由其在海里漂浮离去并成长为新的植物。这些孢子只是植物的细胞,和其他植物细胞没有区别。瓶藻没有性生活,子女所含的细胞只是父母植物细胞的克隆。这两种海藻的唯一不同是:从散藻处独立的生物有许多细胞,而瓶藻释放的永远是单细胞。
1700243399
1700243400
这两种植物让我们看到“瓶颈”生命循环和非瓶颈循环的根本不同。瓶藻的每一个后代都是通过挤压自己,经过单细胞瓶颈繁殖而成的。散藻则在生长之后分成两截,很难说是传递单独的“后代”,还是其已包含了许多单独的“生物”。而瓶藻呢?我马上会解释,但我们已经可以看到答案的痕迹了。难道感觉上瓶颈不是已经更像一个更独立的生物吗?
1700243401
1700243402
我们已经看到,散藻繁殖与生长的方式是相同的,事实上它基本不繁殖。而瓶藻在生长和繁殖间划分了清晰的界限。我们已经来到了这个不同处了,接下来呢?它的重要性是什么?为什么它很重要?我对这个问题已经想了很长时间,现在我觉得我已经知道答案了。(顺便说一句,提出问题比找到答案要难得多!)这个答案可以分成三个部分,前两个部分和演化与胚胎发育间的关系有关。
1700243403
1700243404
首先想想这个问题:简单器官如何演化为复杂器官?我们不必局限于植物,而且在这个讨论阶段里,转向讨论动物可能更好些,因为它们明显有更复杂的器官。我们也没有必要考虑性。有性和无性繁殖在这里只会造成误解。我们可以想象动物以发送无性孢子的方式繁殖。孢子为单细胞,如果不考虑变异,它们在基因上与体内其他细胞完全相同。
1700243405
1700243406
在类似人或土鳖虫这种高等动物中,复杂的器官是由祖先的简单器官逐渐演化而成的。但祖先的器官并不像刀剑被打成铧一般,它们并不直接转变为后代器官。这不是做不做的问题,我要指出,在大多数情况下,它们根本做不到。“从剑到铧”的直接转化方式只能获得很小的一部分改变。真正彻底的变化只能由“回到绘图板”的方式完成,抛弃之前的设计,重新开始。当工程师们回到绘图板前,重新创造一个新设计时,他们并不需要完全抛弃旧设计的灵感,但他们也不是将旧的物件改造成新的,旧物件承载着太多历史。也许你可以将剑打成铧,但将一个螺旋桨发动机“打成”喷气式发动机呢?你做不到。你必须抛弃螺旋桨发动机,回到绘图板重新再来。
1700243407
1700243408
自然,生物从来不曾在绘图板前设计而成,但它们也愿意回到最初的开始,在每一代有一个干净的起点。每一个新生物由单细胞开始成长,它在DNA程序中遗传祖先设计的灵感,但并不遗传祖先自身的器官。它们并不遗传父母的心脏,并重制为改进过的新心脏。它们只愿意从头以单细胞开始,利用与其父母心脏相同的设计程序,长成一个新的心脏,也许还加入一些改进。你现在可以看到我接下来的结论了。“瓶颈”般的生命循环的重要性在于它使“回到绘图板”成为可能。
1700243409
1700243410
“瓶颈”生命循环还有第二个相关的结果:它为调节胚胎发育过程提供了一个“日历”。在“瓶颈”生命循环中,每一个崭新的世代需经过几乎相同的旅程。生物体以单细胞为始,细胞分裂以生长,传输性细胞以繁殖。它想必会走向死亡,但更重要的是,它看起来更像是不朽的。对我们的讨论而言,只要现存的生物已经繁殖,而新一代的循环再次开始,那么前一次循环也就可以结束了。虽然理论上生物可以在其成长过程中任何时间进行繁殖,但我们可以预料到,繁殖的最佳时间最终将会被发现。生物在过于幼小或老迈时,只能释放少量孢子,这将使其不敌那些积蓄能量以在生命重要时间中释放大量孢子的对手。
1700243411
1700243412
我们的讨论方向已经转向了那些定型的、有规律重复的生命循环,每一个世代的生物都从单细胞的“瓶颈”开始。另外,生物还有相对固定时长的生长期,或者说“童年”。这个固定时长的生长阶段使得胚胎发育可以在特定时间里发生特定变化,正像有一个严格遵守的日历一样。在不同的生物中,发育中的细胞分裂以不同规律的次序进行,这个规律则在生命循环的每一个循环中持续发生。当细胞分裂时,每一个新细胞都有其出现的特定时间与地点。巧合的是有时这个规律如此精确,胚胎学家可以以此给每个细胞命名,而每一个生物体中的细胞都有在另一生物体中相对应的细胞。
1700243413
1700243414
所以,这个定型的成长循环提供了一个时刻表或是日历,定点激发胚胎发育事件。想想我们自己如何轻而易举地运用地球的每日自转与每年围绕太阳公转,以规划与指导我们的日常生活。同样,这些来自“瓶颈”生命无限循环的生长规律也几乎不可避免地被用以规划和指导胚胎发育。特定的基因在特定的时间被打开或关闭,因为“瓶颈”生命循环日历确保了这些事件发生的特定时间。基因这种精确的行为规划是胚胎得以进化形成复杂组织与器官的先决条件。鹰的眼睛、燕子的翅膀,这些精确与复杂的奇观无法在没有时间规则的情况下出现。
1700243415
1700243416
“瓶颈”生命历史的第三个结果关乎基因。在这里,我们可以再次使用瓶藻和散藻的例子。我们再次简单假设两种藻类都是无性繁殖,再想想它们将怎样演化。演化需要基因的变异,而变异可以在任何细胞分裂中产生。与瓶藻相反的是,散藻的细胞生命谱系相当广泛,每一个断裂而漂离的枝条都是多细胞,这便可能使得后代植物体内细胞之间的亲缘较其与母植物细胞间的亲缘关系更远(这里的“亲缘”指的是表亲、孙辈等。细胞有明确的直系后代,这些亲缘关系盘根错节,所以同一个身体里的细胞可以用“第二代表亲”这种词汇来表达)。瓶藻在这一点上和散藻十分不同,一株后代植物的全部细胞都来自同一个孢子,所以一棵植物中所有细胞的亲缘关系都比另一株植物要亲近得多。
1700243417
1700243418
这两种藻类的不同可以产生非常重要的不同基因结果。想想一个刚刚变异的基因在散藻和瓶藻中的命运。在散藻中,植物的任何枝条上的任何细胞都可以产生变异。由于子植物为发芽生长所得,变异细胞的直系后代将和子植物、祖母植物等的无变异基因共享一个身体,而这些无变异基因相对亲缘较远。而在瓶藻中,所有细胞在植物上最近的共同亲属也不会比孢子更老,因为孢子提供了这个生命的开端。如果孢子里包含着变异基因,新植物里的所有细胞都将包含这个变异基因。如果孢子没有变异,则所有细胞都无变异。瓶藻里的细胞比散藻中的在基因上更为统一(即使有偶尔的回复突变)。瓶藻作为单独的植物是一个基因身份的整体,是实际意义上的“独立”。而散藻植物的基因身份相对模糊,“独立”意义较瓶藻弱了许多。
1700243419
1700243420
这不仅是一个术语定义的问题。散藻植物的细胞如果有了突变,便不再从“心底”与其他细胞享有共同的基因兴趣。散藻细胞中的基因可以通过促使细胞繁殖而得到优势,而并不需要促使“独立”植物的繁殖。基因突变使得植物中的细胞不再完全相同,也便使细胞不再全心全意互相合作,来制造器官与后代。自然选择选中了细胞,而不是“植物”。瓶藻则不一样。植物中的所有细胞很有可能拥有相同的基因,只有时间上非常临近的突变才可能使基因不同。因此,这些细胞可以为制造有效的生存“机器”而快乐合作。不同植物上的细胞更倾向于有不同基因,于是,通过不同“瓶颈”的细胞可以有显著不同(除了最近的突变),这便是大多数植物的情况。自然因此选择以对手植物为单位,而不是散藻中的对手细胞。于是我们可以看到植物器官与其策略的演化,都服务于整株植物的利益。
1700243421
1700243422
顺便说一下,单单对那些有专业兴趣的人来说,这里其实可以拿类群选择打个比方。我们可以把一个单独生物看作一“群”细胞。类群选择的理论在这里也可以使用,只要能找到增加群体间差异对群体内差异的比例数目的方法。瓶藻的繁殖正是增加这个比例数目达到的效果,而散藻完全相反。在这里,关于这章里“瓶颈”理论与其他两个理论的相似之处也已经呼之欲出了,但我还是先不揭晓。这两个理论分别是:1.寄生生物与宿主在某种程度合作,已使得它们的基因在相同的繁殖细胞中一同传递到下一代,因为寄生生物和宿主的基因需要经过相同的“瓶颈”。2.有性繁殖生物的细胞只与自身互相合作,因为减数分裂公正得不差毫厘。
1700243423
1700243424
总结一下,我们已经可以看到,“瓶颈”生命历史倾向使生物演化为独立而统一的载体,这个理论的三个支持理由可以分别称为“回到绘图板”“准时的时间循环”和“细胞统一”。是先有“瓶颈”生命循环,还是先有独立的生物体?我倾向于认为它们是一同进化而成的。事实上,我猜想独立生物体不可或缺的、决定性的特点,便是其作为一个整体,以单细胞“瓶颈”开始与结束生命历程。如果生命循环成为“瓶颈状”,有生命的材料会逐渐聚集一起,形成独立与统一的生物体。有越多的生命材料聚集形成独立的生存载体,则有更多的载体细胞凝结其努力,作用于特殊种类的细胞,使得它们可以承载其共同的基因,通过瓶颈走向下一代。瓶颈生命循环与独立的生物体,两种现象密不可分。每一个现象的进化都在加强对方的进化,它们互相增强,正如爱情中的男女不断互相加深的情感一般。
1700243425
1700243426
《延伸的表型》这本书很长,它的理论也无法轻易塞进一个章节。我被迫在这里采用了浓缩版本,直观性与趣味性不免少了许多。我希望无论如何,我已经成功将这个理论的感觉传递给你们了。
1700243427
1700243428
让我以一个简短的宣言,一个自私基因与延伸表型眼中的生命总结来回顾前面的章节。我坚持,这是一个可以用以看待宇宙中任何地方、任何生命的观点。所有生命的基本单位与最初动力都是复制因子,它制造了宇宙中所有的复制。复制因子最终因机缘巧合,由小颗粒随机聚合而形成。当复制因子来到世间,便为自身制造了大量无限的复制品。没有任何复制过程是完美的,复制因子也因此有了许多不同的种类变异。一些变异失去了其自我复制的能力,它们的种类则随着其自身消亡而灰飞烟灭。但许多变异还是在这过程中找到新的窍门:它们逐渐变成更好的自我复制者,比其祖先和同类都要更好地复制着自身。
1700243429
[
上一页 ]
[ :1.70024338e+09 ]
[
下一页 ]