1700249577
1700249578
1700249579
1700249580
图4.5 生活在其他细菌体内的细菌。许多γ-变形菌(浅灰色)生活在几个β-变形菌(深灰色)体内,然后全部都在同一个真核细胞体内,图中央偏下处为真核细胞带有斑点的细胞核。
1700249581
1700249582
但是我们怎么有办法检验这两种可能性?之前我们已经提过,靠真核标志基因是办不到的。我们怎么知道这些特质是40亿年前还是20亿年前进化出来的,是在细胞有了线粒体之前还是之后进化出来。即使从原核生物那半边得来的缓慢进化基因也不可靠,依然要看我们选哪一个基因。如果我们采用乌斯的rRNA生命树,那数据就适用于原始吞噬细胞假说。因为在乌斯的生命树模型里,真核细胞与古细菌是“姐妹群”,有一个共同的祖先,它们来自“同样的父母”。也就是说,真核细胞并不是从古细菌进化来的,而是平辈关系。在这个模型里几乎可以确定共祖是某个原核细胞(否则的话只能是所有的古细菌都遗失了它们的细胞核)。但除此之外,其他就没有什么事情是确定的了。至于真核细胞是否在吞入线粒体之前就已经变成原始吞噬细胞,对于这个推测则完全没有基因上的证据。
1700249583
1700249584
如果我们选择更多的基因来绘制一株较复杂的生命树,那真核细胞和古细菌之间的平辈关系就不存在了,看起来反而像真核细胞来自古细菌,虽然具体来自哪一株还不清楚。我前面提过的用了5700个基因绘出超级生命树的研究,是现今最大规模的研究,结果显示最早的宿主细胞确实是古细菌,或许和现代海底热泉附近的古细菌有密切关联。这意味着最早的宿主细胞很可能是古细菌(也就是原核细胞,没有细胞核、性生活、活动细胞骨架、吞噬作用等等),那它一定不会是原始吞噬细胞。那命运邂逅假说就一定是对的,真核细胞来自原核细胞形成的联盟。原始吞噬细胞从来就不存在,找不到它存在的证据,反过来就是它不曾存在的证明。
1700249585
1700249586
然而到目前为止这也不像最后的答案。事实上,这一切都依赖我们用来分析的菌种和所选择的基因,以及筛选的条件。每次参数一改变,生命树的长相与分支模式就会一起改变,在统计学前提、原核细胞间平行基因转移或其他未知的因素之间打转。这种情况到底会因为有更多数据而好转,或者根本就不是遗传学所能回答的(就像是生物学界的不确定原理,越接近事实就越模糊),大家都还在猜测。但是如果遗传学真的没有办法解决问题,难道我们要永无止境地陷在这种对立科学家互相攻讦的泥沼中吗?一定有别的出路。
1700249587
1700249588
所有的真核细胞若不是保留着线粒体,就是曾经拥有线粒体。很有趣的是,所有的线粒体至今都扮演着线粒体的角色,也就是说,在功能上利用氧气来产生能量,同时保有一小部分基因,这一小撮基因是它们的前世记忆,前世中它们还是独立生活的细菌。我认为这一小撮基因其实正藏着真核细胞最深的秘密。
1700249589
1700249590
真核细胞在过去20亿年间不断分异,在这段时间内它们都遗失了线粒体基因。总计来说大约有96%~99.9%的线粒体基因都不见了,或许有大部分被转移到细胞核里,不过没有任何一个线粒体,可以丢掉所有的基因而不失去利用氧气的能力。这并不是随机现象。把所有的基因转移到细胞核里,其实非常合理,因为当99.9%的基因在细胞核里都有备份的时候,又何必在细胞各处,同时存放数百个一模一样的基因?而且保有全部基因也代表着,要在每个线粒体里面,都存放读取基因以及把基因转换成蛋白质的整套机器。这种挥霍的行为应该会惹火会计师,而自然选择应该可以算是会计师的始祖守护神。
1700249591
1700249592
线粒体其实也不是存放基因的好地方。它经常被称为细胞的发电厂,事实上,这小名非常恰当。线粒体会在膜的两侧产生电位差,利用厚约百万分之几毫米的薄膜,可以生成几乎和闪电一样大的电压,是家用电路的好几千倍。在这个地方存放基因,有如把大英图书馆最最珍贵的书籍放在一座发电厂里。这个缺点并不只是理论推测,事实上,线粒体基因突变的速度确实要比细胞核里的快得多。把酵母菌作为实验模型可证明,线粒体基因突变率快了差不多一万倍。撇开这些细节不管,最重要的是两者(细胞核和线粒体)的基因运作一定要配合得天衣无缝。因为真核细胞要产生高压电,需要这两组基因转译出来的蛋白质。如果它们不能互相配合,那后果将是死亡,不只是细胞死亡,个体也会死亡,所以两者一定要顺利合作一起产生能量。既然合作失败会导致死亡,偏偏线粒体基因突变的速率又比细胞核里的快一万倍,这就让密切合作变成了不可能的任务。而线粒体中还保留的这一小撮基因绝对是真核细胞最罕见的特征。如果把这种现象仅当作一种怪癖而忽略它,就好像教科书都做的那样,就等于对地球上的珠穆朗玛峰视而不见。如果剔除所有的线粒体基因有好处的话,那自然选择毫无疑问会这样筛选,或至少会产生一个这样的物种。但自然没有这样选择,因此这些被保存下来的基因一定有它们的理由。
1700249593
1700249594
那线粒体到底为什么要留下部分基因呢?根据艾伦的猜想(在第三章讨论光合作用时,我们介绍过这位充满想象力的科学家),答案就是为了控制呼吸作用。除此以外,别无其他。呼吸对每个人来说都有不同的意义。对一般人来说,呼吸就是吸气吐气。然而对于生物化学家来说,呼吸标示着细胞等级的吸气吐气,代表了一系列细致的生物化学反应,让食物和氧气反应去产生强如闪电的内在高电压。我想不出来还有哪一种自然选择压力会比保有呼吸作用更迫切,从分子角度来看,呼吸作用对于细胞而言也一样重要。使用氰化物这种东西可以阻断细胞的呼吸作用,让细胞停止工作,速度比在头上套塑料袋快多了。不过就算在正常工作的情况下,细胞也要依照细胞的能量需求来微调呼吸作用。艾伦想法中关键的一点就是,用这种微调方式供应能量,细胞需要不间断地做出反应,而这只能通过区域性的基因调节才能做到。就好像战场上把军队调出去之后,就不再由中央政府遥控指挥。同理,细胞核也不适合去指挥细胞中数百个线粒体该工作快点或慢点。
1700249595
1700249596
艾伦的想法未经证实,不过有人正在寻找相关证据。如果他是对的,那将有助于解释真核细胞的进化。如果真核细胞真的需要遍布四处的基因来控制呼吸作用,那就是说大而复杂的细胞无法自行调节呼吸作用。现在来想想细菌和古细菌会面临的选择压力,它们两者产生ATP的方式和线粒体一样,也是利用一道薄膜产生电压。不过原核细胞只能利用细胞外膜,可以看作它们是利用皮肤在呼吸,这就限制了细胞的尺寸。为什么会限制尺寸?我们可以用削马铃薯皮作为例子。如果要获得一吨重的马铃薯肉,你一定会挑最大的来削,因为这样才能削最少的皮就得到最多的马铃薯肉。相反,削小号马铃薯则会削出一大堆皮。细菌就像马铃薯一样,它们用皮肤呼吸,长得越大相对皮肤越少,就越难呼吸。[7]
1700249597
1700249598
原则上,细菌可以借由向内延伸产生能源的膜来解决呼吸不足的问题,而在某种程度上它们确实这样做了。如同我们前面提过,有些细菌带有内膜,让它们外表看起来像真核细胞。然而细菌没有继续发展下去,就算是一般的真核细胞用来产生能量的内膜,比起最厉害的细菌也要好上几百倍。这如同所有其他的细胞特质一样,细菌有往真核细胞的方向发展的趋势,但是很快就停滞了。为什么呢?我猜这是因为细菌无法控制更大范围的内膜呼吸作用。要这么做的话细菌必须分出好几组基因,如同放在线粒体里的基因一样,这绝对不是件简单的事。所有细菌面临自然选择压力采取的策略,比如快速繁殖、丢掉大部分基因只保留最基本的,都不允许细菌往更复杂的方向发展。
1700249599
1700249600
但是这些却正好是成为吞噬细胞的条件。吞噬细胞必须够大才能吞入其他细胞,它需要非常多能量才有办法四处移动,改变形状,吞下猎物。问题就在这里,当细菌变得更大时,它自身消耗越大,也就越无法提供多余的能量用在四处移动与改变形状上。我认为小型细菌很有可能因为其设置更适合快速繁殖,所以在能源竞争上处处赢过大细菌,让大细菌没有充足的时间好好发展各种所需技能,所以最终没有成为吞噬细胞。
1700249601
1700249602
不过“命运邂逅”假说就完全是另外一回事了。在此模式中两种原核细胞以互惠互利的方式和谐地生活在一起,为彼此提供所需的服务。自然界中这样的共生关系在原核细胞群里非常常见,更像一般规律而非例外。比较罕见的(但是仍有被报道过的)反而是一个细胞吞下另一个。不过一旦吞进去之后,整个细胞(包含住在里面的细菌)就会一起进化。它们仍然像以前一样各取所需,但是其他多余的功能则会渐渐消失,直到被吞入的细菌最后只为宿主细胞提供某项特定服务。在细菌变成线粒体的例子里,提供的服务就是生产能源。
1700249603
1700249604
线粒体带给细胞最大的礼物,同时也是让细胞快速进化的关键,就在于它们带来早已准备好的可以制造能量的内膜,以及整套可以就地调节呼吸作用的基因。只有当细胞装备了线粒体之后,它才可能升级为大而活跃的吞噬细胞,而免于因为过多的能量消耗而畏首畏尾。如果上面的推论都正确,那么缺少线粒体的原始吞噬细胞应该不曾存在,因为没有线粒体就不可能有吞噬作用。[8]两个细菌之间的结盟,可以解除细菌永远只是细菌的禁锢。一旦这道禁锢解除,细菌就可能开启一种全新的生活方式,也就是吞噬作用。真核细胞只进化过一次,正是因为两种原核细胞间的结盟关系,也就是一个细胞进入另一个细胞的结盟方式,实在是太罕见了,这是如假包换的“命运邂逅”。所有现在我们珍视的生命特征,所有世上奇妙美好的万物,其实都源自一次同时包含了偶然与必然的事件。
1700249605
1700249606
在本章开始之初我曾提过,只有当我们领悟了用来定义真核细胞的特征——也就是那个细胞核的重要性时,我们才有可能了解或解释真核细胞的起源。现在作为本章的结尾,是时候来谈谈细胞核了。
1700249607
1700249608
1700249609
1700249610
1700249611
图4.6 核膜的构造,图中显示核膜会与细胞里其他膜状构造连接在一起(特别是内质网)。核膜就是由这些囊泡结合在一起形成的。核膜在结构上和任何细胞外膜都没有相似处,这表示核膜并不是来自生活在一个细胞里的另一个细胞。
1700249612
1700249613
科学家对细胞核的起源,就像对细胞本身的起源一样,也有着各种理论和想象,从最简单的,比如细胞膜上冒出了一个小泡,到复杂的,比如来自一个被吞入的细胞。不过大部分的假设往往在一开始就被摒除了。比如说,大部分的理论首先就与核膜的结构不符。细胞核膜并不像外面的细胞膜那样是一整片连续而平滑,它比较像一堆被压扁的小囊,连接着细胞里面其他的膜状构造,同时上面还布满谜一般的孔洞(见图4.6)。剩下的理论也无法解释为什么细胞有核会比没有核要好。最标准的答案就是细胞核可以“保护”基因,但接下来的问题就是,从谁手里保护?小偷还是强盗?如果说细胞核真的有某些普遍性优势,比如说让基因免于伤害,那为什么细菌从来就没有发展出细胞核呢?而我们已经提过有些细菌也发展出内膜构造,应该可以当作细胞核来用。
1700249614
1700249615
既然现在还没有任何确切的证据,我要在这里介绍另一个优秀而充满想象力的假说,这是我们在第二章介绍过的天才双人组——马丁和库宁提出的。他们的假说解释了两个问题,一个是解释了为什么一个嵌合体细胞会需要进化出细胞核,特别是这种一半细菌一半古细菌的嵌合体细胞(我们刚说过这最有可能是真核细胞的始祖)。该假说同时也解释了为什么几乎所有的真核细胞的核里,都塞满了一大堆毫无用处的DNA,而不像细菌那样简洁。我认为我们需要寻找的正是这种想法,尽管它未必正确,但是它确实提出了许多原始真核细胞会面临的问题,而它们一定要想出解决办法才行。他们的假说好似在科学里面加了些魔术,我希望他们是对的。
1700249616
1700249617
马丁和库宁思考的,正是真核细胞“支离破碎的基因”这令人费解的结构,可以算是20世纪生物学上最让人惊讶的事情之一。真核细胞的基因不像细菌的基因排列连续又有条理,它们被许多冗长的非编码序列分割成为一小段一小段。这些非编码序列又称为内含子,关于它们的进化历史,长久以来一直困扰着科学家,直到最近才有了新的发现。
1700249618
1700249619
虽然各个内含子之间有许多差异,不过现在通过辨认共有序列,我们了解到它们的来源都是某一种跳跃基因,这种基因会疯狂地复制自己,然后感染其他基因组,是一种自私的基因。它们的把戏其实也很简单,当一个跳跃基因被转录成为RNA时(通常是插在其他序列里面被一起读出),它会自动折成特殊的形状,变成RNA剪刀,把自己从长段序列上剪下来,接着以自己为模板,不断地把自己复制成DNA。这些新的DNA序列随后或多或少地会被任意插回基因组,变成自私基因的众多复制品。跳跃基因有很多不同的种类,但都是类似模式的变形。人类基因组计划和其他的大型基因组测序计划,都可以证明这些跳跃基因在进化上的成功实在让人惊叹。人类基因组几乎有一半都是跳跃基因或其衰退的(突变的)残片,总计来说,人类全部的基因里大致有三类自私的跳跃基因,不管是死是活。
1700249620
1700249621
就某方面来说,死掉的跳跃基因(就是突变到一定的程度然后完全失去功能,因而无法跳跃)比活着的跳跃基因危害更大。因为活着的跳跃基因至少会把自己从RNA序列上切下来,而不至于造成任何实质上的伤害。而死掉的基因呢?它不会切掉自己,只会阻碍正常程序。如果这段基因不会切掉自己,那宿主细胞就要想办法除去它,不然它会进入蛋白质制造程序,从而引发大灾难。早期真核细胞刚进化出来的时候,确实发明了一些机制来切掉不想要的RNA。这些机制很有趣,细胞其实只是利用跳跃基因自己的RNA剪刀,然后包上一些蛋白质就成了。所有现存的真核生物,从植物到真菌到动物,都在使用这些古老的剪刀,来切掉不想要的非编码RNA序列。因此,现在我们看到了真核细胞里面极为怪异的情况就是,真核细胞的基因组里缀满了自私的跳跃基因制造出来的内含子。每一次细胞读取一个基因的时候,就用从跳跃基因那里偷来的RNA剪刀,把这些不要的片段从RNA序列上剪掉。问题是,这些古老的剪刀速度有些缓慢,而这正是细胞需要细胞核的原因。
1700249622
1700249623
原核细胞无法忍受跳跃基因或内含子。原核细胞的基因和制造蛋白质的整套机器之间并没有区隔。在没有核的情况下,制造蛋白质的小机器(核糖体)直接和DNA混杂在一起,基因在被转录成RNA的同时也被转译成蛋白质。问题就是,核糖体转译蛋白质的速度奇快无比,但是RNA剪刀切掉内含子的速度却比它慢,当剪刀正在剪内含子的时候,细菌的核糖体早就制造出好几套因夹杂内含子而功能不良的蛋白质了。细菌如何让自己免受跳跃基因和内含子之害,至今仍不清楚细节(或许是通过整个族群的负选择),但是事实是它们办到了。大部分的细菌几乎都剔除了所有的跳跃基因和内含子,只有少数细菌(包含线粒体的祖先)还带有一些。这些细菌的基因组里面,大概只有三十几个跳跃基因,相较之下真核细胞的基因组里,可是有上千到上百万套乱糟糟的跳跃基因。
1700249624
1700249625
真核细胞的嵌合体祖先似乎屈服于来自线粒体的跳跃基因大肆入侵。这样说是因为看起来事情就是如此。真核细胞里的跳跃基因,在结构上和细菌体内发现的少数跳跃基因十分相似。特别是绝大部分真核生物相同基因的内含子,都插在同一个位置,从变形虫到蓟花是如此,从苍蝇、真菌到人类亦是如此。根据推测,这很有可能是早期跳跃基因入侵时,不断地复制自己散布到全基因组中,但是后来因渐渐衰退而死去,结果就在真核细胞共同祖先的基因组里留下了这些固定的内含子。但是为何当初跳跃基因会在早期的真核细胞里造成这种大混乱呢?一个可能的原因是,当初细菌的跳跃基因在古细菌宿主体内四处跳来跳去的时候,古细菌宿主细胞根本无法处理这些东西。另一个原因则可能是早期嵌合体细胞族群还太小,无法像大型细菌族群那样利用负选择来淘汰有问题的个体。
1700249626
[
上一页 ]
[ :1.700249577e+09 ]
[
下一页 ]