1700250038
1700250039
这个简单的、裸露的视网膜,也就是一大片感光块,同时也是许多讨论眼睛进化的起点。达尔文本人就认为感光块是一切的起源。不幸的是在断章取义、错误引用他的意见的人中,除了那些拒绝相信自然进化的人,偶尔还有一些科学家企图解决“达尔文也无能为力的难题”。下面就是达尔文曾经写下的内容,一字不差:
1700250040
1700250041
眼睛具有不能模仿的配置功能,可以对不同距离调节其焦点,容纳不同量的光和校正球面像差和色彩的色差,如果说眼睛能由自然选择进化出来,我也承认,这种说法好像是极其荒谬的。
1700250042
1700250043
然而紧接着的下一段文字却常常被忽略,而这一段清楚地指出,达尔文并不认为眼睛不能被解释:
1700250044
1700250045
理性告诉我,如果能够证明从简单而不完全的眼睛,到复杂而完全的眼睛之间,存在无数个阶级,并且和已观察到的实际情形一样,每级对于它的所有者都有用处;如果眼睛也如已观察到的实际情形那样曾经发生过变异,并且这些变异是能够遗传的;同时如果这些变异,对于处于变化的外界环境中的任何动物是有用的;那么,我相信完善而复杂的眼睛,能够通过自然选择而形成。虽然这在我们的想象中似乎难以实现,却不能认为这可以颠覆我的学说。
1700250046
1700250047
简单来说,如果某些眼睛比其他眼睛要复杂一些,而如果这些视觉差异是可以遗传的,又如果视力不良是个不利的条件,那么达尔文认为,眼睛就会进化。上述条件其实都存在。首先这世上充满了简单又不完美的眼睛,从简单的眼点或视窝,到缺少晶状体的眼睛,到具有相当程度的复杂性、一部分或全部吻合达尔文所谓的“不能模仿的配置功能”。当然大家视力都不一样,有些人近视戴眼镜,有人不幸失明。如果看不清楚的话,我们会更容易成为狮虎的盘中餐,或被公交车撞到。同时,所谓“完美”是相对的。好比老鹰眼睛的分辨率比我们高4倍,它可以看清一两千米以外的东西。而我们眼睛的分辨率又比许多昆虫高大约80倍,它们看到的画面充满马赛克,称为艺术品还差不多。
1700250048
1700250049
尽管我可以假设大部分人都能毫不迟疑地接受达尔文所列的条件,但是一般人恐怕还是难以想象,中间的过渡阶段是什么样子。套用幽默作家伍德豪斯的话说就是:就算不是无法克服,也远非可以克服。A除非每一个阶段都各有用处,否则就如前述,眼睛不可能进化。不过事实A伍德豪斯的原句是:“我看得出来,他即使没有不满,也远非满意了。”上,整个过程可以轻易实现。瑞典的两位科学家,丹-埃里克·尼尔森和苏珊·佩格尔利用计算机模型,模拟出一系列进化步骤(见图7.1)。模型中每一步都略有改进,从最简单的裸露视网膜开始,直到非常接近鱼眼的眼睛(和我们的也相去不远)。当然它可以继续改进下去(事实也确实如此)。我们还可以加上虹膜,让瞳孔可以扩张收缩,用来控制进入眼睛的光线量,从而适应各种情况,从明亮的日光到昏暗的夕阳。我们也可以在晶状体上加肌肉,用来推或拉它改变形状,让眼睛可以对不同距离的物体进行聚焦。不过很多眼睛都没有这些微调机关,而且只有在眼睛进化出来之后,才有可能把它们加上去。因此,本章的目的先放在进化出可以成像的眼睛上,尽管这离配置完备还有点远。[2]
1700250050
1700250051
1700250052
1700250053
1700250054
图7.1 根据尼尔森与佩格尔所推测的进化出一只眼睛所需要的连续步骤,以及每一步需要花大约几代来产生。假设每一代是一年,那么整个过程只需要大约不到40万年就可以完成。
1700250055
1700250056
眼睛进化过程中最关键的一点在于,即使是最原始的晶状体也要比没有晶状体好(当然是对黑烟囱海底热泉以外的环境来说),模糊的影像还是比没有影像要好。但是和前面一样,在分辨率与感光度之间又要斟酌一番。比如说,就算完全没有晶状体,光靠针孔也可以形成清晰的影像。也有少数物种使用这种针孔式眼睛,代表者是鹦鹉螺,它是古生物菊石类存活至今的亲戚。[3]但是对鹦鹉螺来说,感光度就是个问题,因为光圈要很小才能形成清晰的影像,因此能进入眼睛的阳光就很少。而在暗处本来光线就少,影像会因为太暗而难以辨析,这正是鹦鹉螺的问题,它恰好就住在不见天日的深海中。英国萨塞克斯大学的神经学家迈克尔·兰德是动物眼睛界的权威,他曾经计算过,如果给同样大小的眼睛加上晶状体,可以让感光度增加400倍,分辨率增加100倍。因此,任何能够进化出某种晶状体的方式,都能带来很大的好处,这个好处就是可以立刻增加存活率。
1700250057
1700250058
三叶虫很可能进化出了第一只真正能成像的眼睛。这些节肢动物身着片状铠甲,宛如中世纪的欧洲骑士一般,而它们的众多亲族足足在海底遨游了3亿年之久。最古老的三叶虫眼睛发现于目前已知最古老的三叶虫化石,大约有5.4亿年历史,我们在本章之初提过,那时寒武纪大爆发刚开始没多久。虽然和3000万年以后全盛时期的眼睛相比,这只眼睛相当朴素,但是眼睛就这么突然地出现在三叶虫化石中,就引出了一个问题:眼睛真的可以如此快速进化吗?如果是这样,那很可能就像帕克所主张的,视觉的进化引发了寒武纪大爆发。但如果不是,那么代表眼睛早就形成了,只不过因为某种原因没有形成化石,而这样一来,眼睛就不可能引起任何生物大爆发。
1700250059
1700250060
绝大多数的证据都指出寒武纪大爆发之所以会出现,是因为当时环境发生了某些改变,让生物挣脱了体型大小的限制。绝大多数寒武纪动物的祖先们,可能都长得又小又软(缺少坚硬的组织),这是它们没留下什么化石的主因。同样的原因也会阻碍眼睛的进化,因为立体视觉需要够大的镜头、延伸开来的视网膜,以及可以处理输入信息的大脑,只有够大的动物才能满足要求。生活在寒武纪之前的小型动物,或许已经具备了大部分的基础设施,比如裸露的视网膜,或简单的神经系统,但是小尺寸的身体注定会阻碍它们更进一步发展。几乎可以肯定,当时大气与海洋中氧气浓度的升高可以促成大型动物出现。只有在高氧气浓度的环境下,才可能有大型动物和猎食行为(因为没有其他的环境可以提供足够的能量,请参见第三章),而大气中的氧气浓度,就在一系列被称为“雪球地球”的全球大冰期事件之后,也就是在即将进入寒武纪之前,迅速升高到和现在浓度一样。在这个充满氧气、令人振奋的新环境里,有史以来第一次大型动物可以靠猎食生存。
1700250061
1700250062
到目前看起来一切都很好,然而,如果说在寒武纪之前并不存在完善的眼睛,那么原来的问题就再度出现,而且似乎更加棘手,那就是自然进化果真能让眼睛进化得如此之快吗?在5.44亿年前,世上一只眼睛也没有,紧接着400万年后马上就有了发展完整的眼睛。看起来,化石证据似乎并不利于达尔文理论的支持者,也就是无法证明眼睛曾有无数中间过渡形态,每个过渡品对于它的所有者都有好处。不过我们也可以用时间尺度的差异来解释这个问题。这个差异存在于我们所熟知的生命寿命时间尺度和漫长的地质时间尺度之间。当我们测量的尺度是数亿年时,任何发生在百万年以内的事情都像突变一般;但是对于活着的生物来说,这段时间仍然漫长单调。比如说现在我们家养的小狗,全都是由狼进化而来的,在人类的帮助之下,整个过程只用了百万年的百分之一。
1700250063
1700250064
从地质时间尺度来看,寒武纪大爆发不过转瞬之间,也就是数百万年而已。但若从进化的角度来看,却是很长的时间。40万年的时间就足够让眼睛进化出来了。尼尔森和佩格尔提出眼睛进化过程模型时,也计算了进化所需要的时间(见图7.1)。他们的计算很保守,假设每一次对特定构造的改变都不超过1%,比如某次稍微改一点点眼球,下次稍微改一点点晶状体,诸如此类。当他们把所有的步骤加起来后,惊讶地发现竟然只需要40万次改变(和我随便乱猜的需要100万次也相去不远)就可以从一个裸露的视网膜发展出构造完整的眼睛。接着,他们假设每代只发生一个改变(这也是保守估计,其实每代可以同时发生好几种改变)。最后他们假设一个海洋生物平均一年繁殖一次。综合上述推测,他们得到的结论就是,要进化出一只眼睛所需的时间不到40万年。[4]
1700250065
1700250066
如果上面的假设正确,那么眼睛的出现确实有可能引发寒武纪大爆发。如果这就是事实,那么眼睛的发明绝对是地球生命历史上最重要、最戏剧性的事件之一。
1700250067
1700250068
尼尔森与佩格尔预测的进化过程中有一个比较麻烦的步骤,那就是制造晶状体。一旦有了原始晶状体,自然进化就可以轻易改造升级。然而,晶状体所需的各种成分一开始是怎么组合在一起的呢?如果构成晶状体的各个成分本来并无用处,自然进化难道不会在它们有机会组合起来以前就将其全部丢掉?这会不会正是鹦鹉螺从来不曾发展出晶状体的原因?尽管晶状体对它来说应该很有用处。
1700250069
1700250070
其实,这不构成任何问题。尽管目前鹦鹉螺恐怕必须继续长着那对成因不明的怪异眼睛,而其他的物种却纷纷找到各自的出路(包括现存与鹦鹉螺最接近的亲戚:章鱼和乌贼),其中有些方法非常有创意。虽然晶状体是特化程度很高的组织,但组成成分却出人意料的稀松平常。它的基本构成材料几乎唾手可得,只需要一点时间,东凑一点西拼一点,从矿物晶体到酶,甚至可以加入一点点细胞。[5]
1700250071
1700250072
三叶虫算是投机主义的最佳范例。你真的会被它们的石头眼睛吓到,因为三叶虫的眼睛非常特别,是由一种矿物晶体,也就是方解石所组成。方解石是一种碳酸钙矿物。石灰石也是,不过石灰石是不纯的碳酸钙。白垩则是比较纯的碳酸钙。英国东南沿岸城市多佛附近的白色峭壁,几乎都是白垩,因为它们的结晶排列稍微有点不规则,使阳光往四处散射,因此让白垩土看起来呈现白色。而如果晶体成长很慢(通常在矿脉处就是如此),方解石就会形成细致透明的结构,它会形成略倾斜的立方体,这就是冰洲石。冰洲石因其原子几何排列方式,获得了十分有趣的光学性质——除了某个特定角度的光线可以直直穿透晶体以外,其他任何一个角度射进来的光线都会产生偏斜。如果光线刚好就从这个特定角度射进来(这个方向轴称为c轴),它会如同被红毯引导般从晶体中直直通过不受阻碍。三叶虫就将这种光学特性转为它眼睛的特点。它的众多小眼睛里,每一只小眼都有自己的方解石晶状体(见图7.2),配合每个结晶独特的c轴,让每一个方解石晶状体接收到的光线正好打在位于下方的视网膜上。
1700250073
1700250074
1700250075
1700250076
1700250077
图7.2 小达尔曼虫(一种三叶虫)的结晶式晶状体。这是发现于捷克共和国波西米亚奥陶纪岩层中的化石,图中显示晶状体的内面,直径大约是0.5毫米。
1700250078
1700250079
三叶虫到底如何长出这些方解石晶状体,并让所有晶状体面向对的方向,这一直是个谜,恐怕永远都是,因为最后一只三叶虫已死于2.5亿年前的二叠纪大灭绝事件中。但是尽管三叶虫被时光的洪流所谋杀,并不代表我们没有其他方法去探索眼睛的形成。2001年科学家从一个意料之外的地方得到了重要线索。看起来三叶虫的眼睛并不是独一无二的,现今仍存活的动物,如海蛇尾,也用方解石做晶状体。
1700250080
1700250081
现今大约有2000种海蛇尾,每种都长着五只腕足,就像它们的海星亲戚一样。但是和海星不同的是,海蛇尾那五只细长华丽的腕足往下垂,如果往上拉的话就会断掉,这是它们英文名称的由来(海蛇尾的英文名就是易碎的星星,brittlestar)。所有海蛇尾的骨骼都由互锁在一起的方解石板组成,这也形成它们腕足上的刺,可以用来抓紧猎物。大部分的海蛇尾都对光不敏感,但是其中一种名叫文氏栉蛇尾的海蛇尾却让观察者十分困惑,因为它在猎食者接近时会先一步迅速躲入漆黑的岩缝中。问题是它没有眼睛,至少没有大家想的那种眼睛。后来一组来自贝尔实验室的研究人员,注意到在它的腕足上排着些方解石,看起来很像三叶虫的晶状体。后来他们证明这些方解石确实和晶状体一样,可以让阳光聚焦在下面的感光细胞上。[6]所以就算海蛇尾没有什么称得上是大脑的东西,但是它们却有眼睛。如同美国《国家地理》的报道所描述的:“大自然的古怪产物,海里的星星有眼睛。”
1700250082
1700250083
虽然我们还不完全了解海蛇尾的眼睛是怎么长的,不过大体上和其他矿物化的生物结构一样,比如海胆的刺(也是由方解石组成)。整个过程始于细胞内部,首先高浓度的钙离子会和细胞内的蛋白质作用,然后固定住成为“晶种”,晶体就会开始在上面生长,过程像排队一样,一个人等在店外面,慢慢地就会排出一条人龙。一个人或一个蛋白质,一旦固定不动了,其他的单元就会凑过来。
1700250084
1700250085
可以用简单的实验来证明,把负责结晶的蛋白质提取出来然后涂在一片纸上,再把纸放到高浓度的碳酸钙溶液中,纸上就会长出完美的晶体,形成冰洲石,每个结晶的光学c轴都朝上,就好像三叶虫的晶状体一样。我们也掌握了一些反应的线索。虽然不知道具体是哪一种蛋白质,这其实不是太重要,重要的是这个蛋白质要有许多酸性侧链。1992年,也就是发现海蛇尾晶状体的十年前,以色列的生物矿物学家里亚·阿达迪与斯蒂芬·维纳就曾用从软体动物壳中取出来的蛋白质,在纸上结出非常漂亮的方解石棱镜,而这些壳没有任何视觉能力。换句话说,尽管结果很神奇,但是其实只要把平常的蛋白质与平常的矿物质混在一起,整套过程就会自动发生。虽然神奇,但并不比天然洞穴,像墨西哥剑洞中发现的钟乳石更稀奇。
1700250086
1700250087
不过尽管方解石眼睛可以产生锐利的视觉,但它终究是死路一条。三叶虫眼睛的重要性在于它的历史价值,因为这是第一只真正的眼睛,但却不是进化中最值得被纪念的眼睛。也有其他生物利用其他的天然晶体做各种用途,特别是鸟嘌呤(也是构成DNA的一个元素),一样可以形成聚焦光线的结晶。鸟嘌呤晶体可以让鱼鳞产生银亮的七彩色泽,因此也被加在许多化妆品中。它也存在于鸟粪里(因而得名,也称其为鸟粪嘌呤)。类似的有机结晶可以作为生物性镜子,其中最为人熟知的就是猫眼中的“反光膜”了。它可以将阳光再次反射到后方的视网膜上,让视网膜有第二次机会多抓住一些微弱的光子,因而可以强化夜间视觉。还有其他的生物性镜子,也可以让影像在视网膜上聚焦。比如扇贝类漂亮众多的眼睛,会从壳边缘的触手间伸出偷窥,它们利用视网膜下方的凹面镜来聚焦。至于许多甲壳纲动物,包含虾、盲虾和龙虾的复眼,也是靠着反光镜来聚焦,这些眼睛用的也是鸟嘌呤形成的天然晶体。
[
上一页 ]
[ :1.700250038e+09 ]
[
下一页 ]