1700264172
V 关于鳞角腹足螺的“铁甲”,参见:Yao, Haimin; Dao, Ming; Imholt, T.; Huang, J.; et al.(2010). Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod.PNAS, 107 (3): 987–992。
1700264173
1700264174
VI White, L. M.; Bhartia, R.; Stucky, G.; et al.(2015). Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life.Earth and planetary science letters, 430: 105-114.
1700264175
1700264176
VII 关于铁复硫矿催化乙酰辅酶A路径,参见:Roldan, A.; Hollingsworth, N.; Rofey, A.; et al.(2015). Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions,Chemical communications, 51(35)
:7501–7504。
1700264177
1700264178
VIII 实验论文参见:Preiner, M.; Igarashi, K.; Muchowska, K. B.; et al.(2020) A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nature Ecology & Evolution, 4: 534–542。
1700264179
1700264180
IX Russell, M. J.; Nitschke, W.(2017). Methane: Fuel or exhaust at the emergence of life?Astrobiology, 17(10): 1053–1066.
1700264181
1700264182
X 二氧化碳被氢气还原成甲酸,参见:Moret, S.; Dyson, P. J.; Laurenczy, G.(2014). Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media.Nature communications, 5: 4017。
1700264183
1700264184
XI Herschy, B.; Whicher, A.; Camprubi, E.; et al.(2014). An origin-of-life reactor to simulate alkaline hydrothermal vents.Journal of molecular evolution, 79(5-6): 213–227;Volbeda, A.; Fontecilla-Camps J. C.(2006). Catalytic nickel–iron–sulfur clusters: from minerals to enzymes. In: Simonneaux, G.(eds).Bioorganometallic Chemistry.Topics in organometallic chemistry, 17: 57–82. Berlin, Germany
:Springer.
1700264185
1700264186
XII 实验论文,参见:Herschy, B.; Whicher, A.; Camprubi, E.; et al.(2014). An origin-of-life reactor to simulate alkaline hy drothermal vents.Journal of molecular evolution, 79(5-6): 213–227。
1700264187
1700264188
XIII 在这个实验最终发表后的论文:Vasiliadou, R.; Dimov, N.; Szita, N.; et al.(2019). Possible mechanisms of CO2 reduc tion by H2 via prebiotic vectorial electrochemistry.Interface focus, 9(6)。
1700264189
1700264190
XIV Hudson, R.; de Graaf, R.; Rodin, M. S.; et al.( 2020). CO2 reduction driven by a pH gradient.Proceedings of the NationalAcademy of Sciences, 117 (37): 22873-22879.
1700264191
1700264192
XV 关于甲酰甲烷呋喃脱氢酶的催化原理:Wagner, T.; Ermler, U.; Shima, S.(2016). The methanogenic CO2 reduc ing-and-fixing enzyme is bifunctional and contains 46[4Fe-4S] clusters.Science, 354(6308): 114–117.
1700264193
1700264194
XVI 关于甲酰甲烷呋喃脱氢酶,参见:Wagner, T.; Ermler, U.; Shima, S.(2016). The methanogenic CO2 reducing-and-fix ing enzyme is bifunctional and contains 46[4Fe-4S] clusters.Science, 354(6308): 114–117。
1700264195
1700264196
XVII 关于钴咕啉铁硫蛋白的作用机理,参见:Svetlitchnaia, T.; Svetlitchnyi, V.; Meyer, O.; Dobbek, H.(2006). Struc tural insights into methyltransfer reactions of a corrinoid iron–sulfur protein involved in acetyl-CoA synthesis.Proceedingsof the National Academy of Sciences, 103(39): 14331-14336; Stich, T. A.; Seravalli, J.; Venkateshrao, S.; et al.(2006). Spec troscopic studies of the corrinoid/iron-sulfur protein from Moorella thermoacetica.Journal of the American Chemical Society, 128(15)
:5010–5020。
1700264197
1700264198
XVIII 关于一氧化碳脱氢/乙酰辅酶A合成酶,参见:Dobbek, H.; Svetlitchnyi, V.; Gremer, L.; et al.(2001). Crystal struc ture of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster.Science, 293(5533): 1281–1285; Lindahl, P. A.(2009).Nickel-carbon bonds in acetyl-coenzyme a synthases/carbon monoxide dehydrogenases.Metal ions in life sciences, 6
:133-150。
1700264199
1700264200
XIX 关于乙酰辅酶A合成酶的铁硫簇A催化机制,参见:Hegg, E. L.(2004). Unraveling the Structure and mechanism of acetyl-coenzyme a synthase.Accounts of chemical research, 37(10): 775–783。
1700264201
1700264202
第十章
1700264203
1700264204
I 关于白烟囱假说对甲硫醇和硫代乙酸甲酯的倾向,参见:Martin, W.; Russell, M. J.( 2007). On the origin of biochemistry at an alkaline hydrothermal vent.Philosophical transactions of The Royal Society B Biological Sciences, 362(1486)
:1887–1925。
1700264205
1700264206
II Kitadai, N.; Maruyama, S.(2018). Origins of building blocks of life: A review.Geoscience frontiers, 9(4): 1117-1153.
1700264207
1700264208
III Camprubi, E.; Jordan, S. F.; Vasiliadou, R.; Lane, N.(2017). Iron catalysis at the origin of life.IUBMB Life, 69(6)
:373-381.
1700264209
1700264210
IV Whicher, A.; Camprubi, E.; Pinna, S.; et al.(2018) Acetyl phosphate as a primordial energy currency at the origin of life.Origins of life and evolution of biospheres,;48(2)
:159–179.
1700264211
1700264212
第四幕
1700264213
1700264214
第十一章
1700264215
1700264216
I 关于天花病毒的起源,参见:Hughes, A. L.; Irausquin, S.; Friedman, R.(2010). The evolutionary biology of pox viruses.Infection, genetics and evolution, 10 (1): 50–59。
1700264217
1700264218
II 关于最复杂的拟菌病毒基因组,参见:Abrahão, J.; Silva, L.; Silva, L. S.; et al.(2018). Tailed giant Tupanvirus possesses the most complete translational apparatus of the known virosphere.Nature communications, 9(749)。
1700264219
1700264220
III Judd, B. H. (2001). Nucleic acids as genetic material. In eLS, (Ed.). https://doi.org/10.1038/npg.els.0000807.
1700264221
[
上一页 ]
[ :1.700264172e+09 ]
[
下一页 ]