1700267980
1700267981
这只是鼠耳蝠的巡航采样率。它一旦侦察到一只昆虫,进入拦截航道了,“蝙蝠探测器”的滴答频率就急速上升。它的频率比机枪还快,它锁定的目标接近时最高频率可达每秒200个脉冲。用频闪观测器模拟的话,我们必须将闪光的速度调到交流电频率的两倍—要是使用日光灯管的话,我们的眼睛不会察觉闪光。换言之,在这样的视觉世界中我们的正常视觉功能一点都不受妨碍,甚至打壁球、乒乓球都不成问题。要是你能够想象蝙蝠大脑建构的影像世界可与我们的视觉影像模拟,单以脉冲率这个变量似乎就可以推论蝙蝠的回声影像也许至少与我们的视觉影像一样详尽与“连续”(流畅)。要是不如我们视觉影像那么详尽,当然,也许有其他的理由可以解释。
1700267982
1700267983
要是蝙蝠必要时可以将采样频率提升到每秒200次,为什么它们不一直以这个频率采样?很明显,它们的“频闪观测器”上有个控制“钮”,为什么它们不一直将它转到“最大”的刻度?它们对世界的知觉一直保持最灵敏的状态,随时可以应付紧急状况,有什么不好呢?一个理由是:这些高频率只适用于较近的目标。要是一个脉冲紧跟着前一个脉冲,从远方目标反弹回来的“回声”就会混迹一气,无从分辨。即使不为了这个理由,一直保持最高脉冲频率也太不“经济”了。发出超高频超声波要付出的代价是:能量、耗损(发声器官与接收器官),也许还有计算成本。大脑要是每秒必须处理200个不同的回声,大概就没有思考(计算)其他事物的余裕了。甚至每秒10个脉冲的缓慢频率都可能很耗能,但是比起每秒200个的频率要省多了。蝙蝠当然可以提高声纳的灵敏度,可是要付出这么多代价,所得不抵所失。要是它四周除了自己别无其他移动物体,世界在连续的1/10秒中一直维持老样子,就没有必要做更为密集的采样。要是它四周出现了另一个移动物体,特别是正以浑身解数摆脱追猎的昆虫,提升采样频率带来的好处就可能超过代价。当然,本段考虑的代价与好处都是虚拟的,但是这样的考虑几乎必然是实情。
1700267984
1700267985
工程师一旦着手设计一台高效率的声纳或雷达,为了要将脉冲频率提升到最高,很快就会面临一个问题。频率必须很高的原因是:声音广播出去后,波前(wavefront)一路上就像一个不断膨胀的球。声音的强度分布在这个球的球面上,也可以说,在球面上“稀释”了。任何球的表面积都与半径的平方成正比。由于球不断膨胀,球面上任一点的声音强度就会降低,降低的幅度与声源距离(半径)的平方成比例。这就是说,声音广播出去后,很快就沉寂了。蝙蝠的声波也一样。
1700267986
1700267987
这稀释了的声音一旦撞上了一个物体,就说是个苍蝇好了,就反弹回去。现在轮到这弹回的声音“稀释”了,它的波前也是个不断膨胀的球。反弹声波的强度与该点距苍蝇的距离的平方成反比。等到蝙蝠收到回声时,它的强度(比起原来发出的声音)降低的程度不只和蝙蝠与苍蝇距离的平方成正比,而是那个距离的平方的平方—四次方。也就是说,回声实在非常微弱。这个声音稀释的问题,部分解决之道是利用类似扩音机的装置广播声音,这样回声即使稀释了,也与原先声音的实际强度不会差距太大,但是蝙蝠得先确定目标的方向。总之,要是蝙蝠想侦测远方目标,它发出的声音必须很大,它的耳朵也必须对微弱的回声非常敏感。蝙蝠发出的声音有时的确很大,我们已经说过了,它们的耳朵非常灵敏。
1700267988
1700267989
好了,这就是设计蝙蝠机器的工程师遭遇的问题:麦克风—或耳朵—果真非常灵敏的话,就会被自己发出的超声波伤到。降低发出声音的强度不是办法,因为那么做之后,回声就难以侦测了。为了侦测极为微弱的回声,提升麦克风(耳朵)的灵敏度也不是办法,那只会使它更受自己发出的声音的伤害—虽然强度已经降低了!这个进退两难的局面是发出的声音与回声之间的巨大差异造成的,而这个差异是无情的物理学定律规定的,无法回避。
1700267990
1700267991
还有别的办法吗?第二次世界大战时设计雷达的工程师也遭遇过同样的问题,他们想出了一个办法,他们叫作“发射/接收”雷达。雷达信号是以必要的强度发射出去的,而且强度可能会伤害为接收微弱信号而设计的天线。“发射/接收”雷达在发射信号时,会关掉接收天线,然后再打开天线接收反射波。
1700267992
1700267993
蝙蝠早就发展出“发射/接收”控制电路的技术了,也许在我们祖先从树上下地生活之前几百万年吧。它是这样运作的:蝙蝠的耳朵和我们的耳朵一样,声波由鼓膜经过三块听小骨传递给声音敏感的细胞(它们的传入神经纤维组成听觉神经)。这三块听小骨就是锤骨、砧骨、镫骨,解剖学家依据它们的形状取的名。顺便提一下,这三块听小骨的组装方式,完全符合立体声音响工程师考虑的“阻抗匹配”(impedance-matching),不过我们不准备在这里讨论。我们要讨论的是:有些蝙蝠的镫骨与锤骨由发育良好的肌肉相连。收缩这些肌肉就能降低听小骨传送声波的效率—就好像用大拇指按在麦克风的震动膜上,麦克风就失灵了。蝙蝠可以用这些肌肉把耳朵暂时“关掉”。每个脉冲发出之前,它收缩这些肌肉,关掉耳朵,使耳朵不至于受自己发出的强大脉冲伤害。然后放松这些肌肉,使耳朵及时恢复灵敏,捕捉回声。这个“发射/接收”系统的运作,以精密地掌控时间(timing)为前提。皱鼻蝠(与鼠耳蝠不同科)收缩/放松开关肌肉,每秒可达50次,与机枪似的超声波脉冲放射完全同步。真是时间掌控的绝技!第一次世界大战的战斗机也使用了类似的绝技。那时的战斗机配有机枪,机枪的枪口对准正前方,可是那不只是敌机/目标的方向,螺旋桨也在枪口。因此螺旋桨的转速与机枪发射速度必须精密同步,使枪子儿始终只从桨叶之间射出,不然一开枪就击毁了桨叶,就把自己打下来啦。
1700267994
1700267995
工程师会碰上的下一个问题,是这样的:如果声纳想以发射声音与接收回声之间的时间差测量目标的距离,埃及食果蝙蝠似乎采用这个方法,那么发射的声音就必须短而促。声音拉得太长的话,回声反弹回来的时候可能还没消歇,即使听小骨让肌肉束缚住了,不太灵敏,都会混入回声,妨碍侦测。理想状态是,蝙蝠发射的声波脉冲似乎应该极为短促。但是声音越短促,蕴含的能量越不足以使回声易于侦测。看来这又是一个难以两全的局面,物理定律真不饶人。机灵的工程师也许能想到两个解决方案,事实上当年设计雷达的工程师真的想到了。至于选择哪一个,视目的而定:想侦测目标的距离,还是目标的速度?第一个方案雷达工程师叫作“啁啾雷达”(chirp radar)。
1700267996
1700267997
我们可以将雷达信号想成一个脉冲系列,但是每个脉冲都有一个所谓的载波频率—相当于声波或超声波脉冲的“调子”。我们已经说过,蝙蝠发出的声音,脉冲重复率在每秒几十次至几百次之间。每一个脉冲的载波频率是每秒几万或几十万周期。换言之,每个脉冲都是调子很高的“尖叫”。雷达脉冲也是同样的无线电波“尖叫”,载波频率很高。“啁啾雷达”的特征是:送出的每个脉冲载波频率都不固定,而是陡然拔高或降低一个八音程。要是以声音来想象的话,每次雷达发射,都像是放送陡然拔起的狼嗥。“啁啾雷达”的优点是:声音反弹回来时即使原先的声音仍未消歇也没关系。反弹声与原始声不会混淆,因为任何一刻侦测到的反弹声反映的都是“啁啾”(狼嗥)中的先前部分,与仍未消歇的部分调子有别。
1700267998
1700267999
人类雷达设计者充分利用了这一巧妙的技术。蝙蝠呢?也“发现”了这个技术吗?答案是:事实上,许多蝙蝠的确会发出陡然降低的叫声,每一声降低的幅度通常等于一个八音程。这些“狼嗥”工程师称为“调频”(FM)音,似乎非常适合应用“啁啾雷达”技术。不过,目前的证据显示蝙蝠的确利用了这个技术,但不是为了分别原先的声音与回声,而是更难以捉摸的任务—分辨先后的回声。蝙蝠生活在回声的世界中,近的物体、远的物体、不远不近的物体都有回声;蝙蝠必须分辨它们。要是它发出的是陡然降低的狼嗥“啁啾”,凭着回声的调子就可以分别远近不同的物体。同时接收到的回声,从远方物体反弹回来的,源自狼嗥中比较“老”(初始)的部分,所以调子较高。因此同时接收到好几个回声的蝙蝠,根据一个简单的原则就能分辨物体的远近:回声调子越高,物体越远。第二个工程师可能想到的巧妙点子,是多普勒位移,测量移动物体的速度这一招特别管用。多普勒位移或许也可以叫作“救护车效应”,因为大家都有过这样的经验:救护车经过我们面前之后警报器的调子就突然下降了,这就是多普勒位移现象。只要音源(或光源或其他波的波源)与接收声音的一方有相对运动,就会发生多普勒位移。固定不动的音源与移动的听者我们最容易想象。假定一座工厂屋顶上的警报器响了,不断发出单调的鸣声。警报声一波波向四方广播,我们看不见波,因为它们是气压波。要是看得见的话,它们应该像是一圈圈向外扩散的同心圆,我们丢一个石头到平静的水塘中,就可以看见那种圈圈涟漪。请想象丢进水塘的不止一块石头,而是一系列石头,所以同心圆中心不断放射出同样强度的波。要是我们在水塘中一个固定的位置系泊一艘小船,水波不断通过这艘船的船底,船身随之上下升降。船身升降的频率,相当于声波的调子。现在假定这艘船起锚朝向波心方向驶去,船身继续在一圈圈波前冲击下不断上下颠簸,但是这时船身上下起伏的频率会升高。另一方面,等到它穿过波心继续前进,船身上下起伏的频率就明显降低了。
1700268000
1700268001
同样的,要是我们骑着摩托车迅速经过警报器响个不停的工厂,靠近工厂时我们听见的警报调子较高:事实上,比起坐着不动,我们的耳朵灌入了速率较快的声波。同样的论证可以说明:摩托车一通过工厂,警报的调子听来就突然降低了。要是我们停下来不动,警报声的调子就不会变高或变低,而是在两个多普勒位移调之间。我们可以据此推论:要是我们知道警报声实际的调子,理论上就可能算出我们接近或背离音源的速度,只要比较我们听到的调子与已知的真正调子即可。
1700268002
1700268003
同样的原理也适用音源移动、听者不动的情况,“救护车效应”就是一例。据说多普勒(Christian Doppler,1803~1853,维也纳大学实验物理学教授)当年雇用铜管乐队演示这个效应,他让乐队在行进中的火车露天车皮上演奏,火车急驶而过,观众惊疑不置。我不知道这个故事是不是真的。多普勒效应的关键是相对运动速度,至于是听者经过音源还是音源经过听者倒无妨。要是两列火车以时速200公里正面错车,车上乘客可以听见极为夸张的多普勒效应—另一列车的鸣声从尖锐高亢的呼号“崩溃”成一种绵长的呜咽—因为听者与音源的相对时速达400公里。
1700268004
1700268005
交通警察用来抓超速车辆的雷达,就是利用多普勒效应的仪器。一台静置的仪器向路上发射雷达信号,雷达波从逼近的车辆上弹回,由接收器记录下来。车子的速度越快,反弹信号频率的多普勒位移越大。比较发射信号与反弹信号的频率,警察的仪器就能自动计算出车速。要是警察可以利用这个技术抓路上的神行太保,我们敢指望蝙蝠也用它测量昆虫猎物的速度吗?
1700268006
1700268007
答案是:没错。科学家早就知道马蹄蝙蝠(一种小型蝙蝠)发出悠长、单调的“嘘声”,而不是短促或声调急降的“狼嚎”似的声音。我说那“嘘声”悠长,是以蝙蝠的标准来说的,实际长度不超过1/10秒。而且每一个“嘘声”结束时往往杂以一声“狼嚎”,我们后面会讨论到。首先,想象一只马蹄蝙蝠一面飞向一个静物—如一棵树,一面发出一个连续的低沉超声波。由于它朝向这棵树飞行,所以超声波波前会加速撞及这棵树。要是我们在树上隐藏一个麦克风,可以“听见”那因为多普勒效应而调子拉高的声音。树上当然没有麦克风,但是从树上反弹回来的回声的确会因为多普勒效应而调子拉高了。现在的状况是:反弹声波的波前朝飞近的蝙蝠推进,也就是说蝙蝠仍继续朝树迅速飞去。因此蝙蝠接收到的回声,调子会被多普勒效应再度放大。蝙蝠—或它大脑配备的电脑—比较它发出的声音与回声的调子,理论上,就能算出自己的飞行速度。这并不能告诉它那棵树离它有多远,但也许仍然是非常有用的信息。
1700268008
1700268009
如果反弹回声的物体不是树之类的静物,而是移动的昆虫,多普勒效应的结果就变得非常复杂,但是蝙蝠仍能算出它与目标的相对运动速度,这正是像猎食的蝙蝠一样的尖端导向导弹所需要的信息。实际上有些蝙蝠耍的把戏更有意思,不只发出悠长、单调的“嘘声”,然后测量回声的声调。它们仔细调整“嘘声”的调子,使回声经过多普勒效应后也保持“单调”。它们迅速朝一个移动中的昆虫飞去,不断改变“嘘声”的调子,使回声一直保持固定的调子。它们耍这个巧妙的把戏,为的是将回声频率锁定在耳朵最灵敏的范围内,方便侦测—别忘了,回声非常微弱。它们只要掌握“嘘声”的调子,就能得到做多普勒计算必要的信息(因为回声是一样的)。我不知道人造仪器——雷达或声纳—是否利用过这个巧妙的点子,但是在这个领域里,大多数巧妙的点子似乎都是蝙蝠先发展的,因此这个问题我不介意站在人类这一边:我打赌人造仪器利用过这个点子。
1700268010
1700268011
用不着说,多普勒技术与“啁啾雷达”技术非常不同,适用于不同的特殊目的。有些蝙蝠群充分利用其中一种,其他群利用另一种。有些似乎鱼与熊掌兼得,在悠长、单调的“嘘声”结尾处加上一个调频“狼嚎”。马蹄蝙蝠另外还有一个本事值得注意:它们的耳廓可以快速前后活动,其他蝙蝠都不行。可想而知,耳朵的收听面相对于目标的迅速活动,会影响多普勒效应,而那些影响可以获得更多有用的信息。耳廓收听面迎向目标的时候,朝向目标的运动速度表面上会增加;耳廓背向目标时,速度表面上会降低。蝙蝠的大脑“知道”每只耳朵收听面的方向,因此原则上可以做必要的计算,取得有用的信息。
1700268012
1700268013
蝙蝠面临的问题,也许最难解决的就是遭到其他蝙蝠叫声的无心干扰(jamming)。科学家以人工超声波“袭击”蝙蝠,发现很难让它们偏离既有航向,科学家非常惊讶。以后见之明来看,这个结果事先也许可以预见。蝙蝠必然早就解决这个干扰问题了。许多蝙蝠生活在洞穴中,而且数量庞大,想来洞里必然交织着超声波与回声的“鬼哭狼嚎”,震耳欲聋,可是蝙蝠可以在漆黑的洞里迅速飞掠,不会撞墙,也不会互撞。它们只追踪自己的回声,不受其他蝙蝠叫声/回声的误导,有何秘诀?工程师想到的第一个方案也许是某种频率码:也许每只蝙蝠都使用自己的“私人”频率,就像每个无线电台使用的频率都不同。在某一程度内,这也许是实情,但是这不会是蝙蝠解决方案的全貌。
1700268014
1700268015
蝙蝠不会彼此干扰的秘密我们还不完全清楚,但是科学家以人工干扰实验发现了一条有趣的线索。原来,要是你将它们发出的叫声耽搁一些时间才反射回去,有些蝙蝠就会受骗。换言之,以它们自己的叫声骗它们。要是小心控制假回声的播放时间,蝙蝠甚至还可能想降落在不存在的岩架上。我认为这显示:蝙蝠也和人一样,借着一个“晶状体”观看世界,只不过蝙蝠的晶状体是回声。
1700268016
1700268017
看起来蝙蝠利用的也许是我们可以称为“‘陌生’滤镜”的东西。蝙蝠每一声叫声的回声,它都用来建构一张世界图像,这张图像的意义与根据先前回声建构的世界图像产生关联。一只蝙蝠的大脑要是听到了其他蝙蝠叫声的回声,并想解读它的意义,可是发现它难以融入先前建构的图像,就会决定这回声没有意义。这就好像世界中的物体突然无厘头地移动了。真实世界中物体不会那么“疯狂”,因此大脑将这个回声“滤掉”,当作背景噪音,不会产生什么不良影响。要是它自己叫声的回声被科学家做过手脚,设法耽搁一些时间或者加速,仍会有意义,因为假回声与先前建构的世界图像对得上号。“‘陌生’滤镜”接受假回声,因为就先前回声的脉络而言,假回声颇可信。假回声的世界中,物体移动的位置似乎很小,在真实的世界中物体那样移动是可能的,也是可期盼的。蝙蝠大脑的工作假设是:任何一个回声脉冲描绘的世界,要不与先前得到的世界图像一样,要不就只有一点儿差异;例如它正在追踪的虫子已经移动了一小段距离。
1700268018
1700268019
美国纽约大学哲学教授内格尔(Thomas Nagel,1937~ )写过一篇很有名的论文,叫作“当一只蝙蝠是怎么回事?”(1974)。这篇论文与蝙蝠关系不大,主要是讨论一个哲学问题:如何想象做一个我们本来就不是的玩意儿?不过,内格尔这位哲学家认为蝙蝠是个特别有说服力的例子,这是因为蝙蝠依赖回声过活,我们尤其难以体会它们的经验,人类与蝙蝠似乎生活在不同的世界里。如果你想体验当蝙蝠的滋味,就走进一个山洞,大叫或以两个叉子互击,然后仔细测量需要多久才听见回声,再计算你距墙有多远—我们几乎可以肯定这样做绝对不成。
1700268020
1700268021
上面用来描绘蝙蝠生活的办法,并不比下面的办法更好,那就是搞清楚“看见颜色是怎么回事”,用一台仪器测量进入眼睛的光线波长,要是波长较长,你看见的是红色,要是波长短,看见的就是紫色或蓝色。我们说红色的光波长比较长,蓝色光的波长短,这正巧是个物理事实。不同波长的光启动了我们视网膜上对红色敏感与对蓝色敏感的感光细胞。但是我们对颜色的主观感觉中根本没有波长这个概念。看见红光或蓝光的感觉,不会告诉我们哪种光的波长比较长。要是波长很重要(通常不会),我们只需记住就成了,或者(像我一样)查参考书。同样的,蝙蝠以我们所说的回声知觉到一只昆虫的下落,但是它绝不会想到隔了多久才收到回声这类劳什子,就像我们知觉到红色或蓝色也不会想到什么波长。
1700268022
1700268023
真的呢,要是我得尝试这不可能的任务,想象—“当一只蝙蝠是怎么回事”,我会猜它们的回声定位也许就像我们以眼睛观看世界一样。我们是非常依赖视觉的动物,因此我们无法了解观看是多么复杂的官能。物体“就在那里”,我们认为我们“看见”它们“就在那里”。但是我怀疑我们的知觉经验其实不过是大脑中一个复杂的电脑模型,根据从外界来的信息建构出来,并将外界信息转换成可以利用的形式。外界光线的波长差异,在我们大脑的电脑模型里注册成颜色的差异。形状与其他的特征也以同样的方式注册,就是以容易处理的形式注册。“看见”的感觉,对我们来说与“听见”的感觉截然不同,但是这绝不是光线与声音的物理差异直接造成的。追根究底,光线与声音由不同的感官翻译成同类的神经冲动。从一个神经冲动的物理特征,无法分辨它传递的是光、声还是气味。“看见”的感觉与“听见”的感觉、“闻到”的感觉非常不同,是因为大脑发现以不同类型的模型分别注册视觉、听觉和嗅觉世界的特征比较方便。因为我们心中对于视觉信息与听觉信息使用的方式不同,目的也不同,难怪“看见”与“听见”的感觉不同。那不是因为光线与声音有物理差异。
1700268024
1700268025
但是蝙蝠使用声音信息,与我们使用视觉信息,是为了实现同类的目的。它们利用声音知觉物体在三维空间中的位置,并连续更新这种信息,我们利用光线的目的也一样。因此蝙蝠需要的内建电脑模型,必须适合处理“物体在三维空间中不断变动位置”的情况,也就是适合“再现”那种情况。我的论点是:动物的主观经验采用的形式,是它们内建电脑模型的一个性质。在演化过程中,那个模型的设计原则与“是否适合产生有用的内部再现”有关,与外界来的物理刺激无关。蝙蝠与我们需要同类的内建模型,再现(representing)物体在三维空间中的位置。不错,蝙蝠利用回声建构它们的内建模型,我们利用光线,可是这与内建模型的性质不相干。别忘了:那些外来信息在进入大脑前已经被翻译成同类的神经冲动。
1700268026
1700268027
因此,我的臆测是:蝙蝠“看见”世界的方式与我们的大体相同,即使它们以非常不同的物理媒体将外在世界翻译成神经冲动—它们用超声波,而我们用光线。蝙蝠甚至也能利用我们叫作颜色的感觉实现它们的目的,例如用来再现外在世界的差异,那些差异与波长毫无关系,可是对蝙蝠有用,就像颜色对我们有用一般。也许雄蝙蝠的身体表面有某种微细的肌理,因此反弹的回声雌蝙蝠知觉起来饱含“色彩”,功能上与雄性天堂鸟用以吸引异性的“彩妆嫁衣”一样。我说的并不是什么意义模糊的隐喻。雌蝙蝠知觉到一只雄蝙蝠时,它心中涌现的主观感觉搞不好真的是艳丽的红色:与我见到南美火鹤产生的感觉一样。或者,至少可说那只雌蝙蝠对男友的感觉与我对火鹤的视觉感觉,即使有差异,也相当于我对火鹤的视觉感觉和火鹤彼此的视觉感觉之间的差异,绝不会更多。
1700268028
1700268029
格里芬说过一个故事,那是1940年,他与哈佛同学高隆博什(Robert Galambos,1914~2010)首次在一个会议中对一群动物学家发表他们的新发现:蝙蝠利用回声定位法飞行。所有的学者都非常惊讶。一位著名的科学家不但不信,还非常愤慨——
[
上一页 ]
[ :1.70026798e+09 ]
[
下一页 ]