打字猴:1.700268366e+09
1700268366 竹节虫与叶竹节虫的模样,我们使用“拟态”这个词来指涉,可是我们并不认为这些动物有意识地模仿其他东西的模样,而是自然选择青睐那些被误认为其他东西的个体。换言之,竹节虫的祖先族群里,凡是看来不像竹枝的都没留下后裔。有些学者认为“拟态”在演化的早期阶段不大可能受自然选择青睐,德裔美籍遗传学家戈尔德施密特(Richard Goldschmidt,1878~1958)是其中最有名的。就像私淑戈尔德施密特的古尔德谈到“拟”粪堆“态”的昆虫时所说的:“看来与粪堆只有5%的相似程度会有任何好处吗?”由于古尔德的影响力,最近为戈尔德施密特“恢复名誉”的言论颇为时髦,什么戈尔德施密特生前就受到打压啦,戈尔德施密特有些真知灼见值得发掘啦等等。且让我举个例子,让大家欣赏欣赏他的论证:
1700268367
1700268368 (有人说)……某些个体因为基因发生突变,恰好长相与某个较不受猎食者青睐的物种相似,因此占了一些便宜。我们必须追问的是:究竟得多相似才能占到便宜?难不成我们必须假定鸟儿、猴子、螳螂的观察能力异常高明(或者有些聪明家伙很高明),只要一丁点儿相似都会当真,自动退避三舍?我想这个要求太过分了。
1700268369
1700268370 戈尔德施密特的立论太不牢靠了,不该耍这种嘴皮子的。观察能力异常高明?聪明家伙?读者会以为他在说鸟儿、猴子、螳螂因为被极为原始的“拟态”骗了,反而占到便宜。戈尔德施密特应该这么说:“难不成我们必须假定鸟儿、猴子、螳螂的视力那么糟(或者有些笨蛋真的糟到那个地步)?”然而,这的确是个不易解答的难题。竹节虫的祖先一开始与竹枝的相似程度必然不怎么样。只有视力烂透了的鸟儿才会上当,可是现代竹节虫与竹枝的相像程度实在惊人,连竹枝上的细节都仿冒得惟妙惟肖。鸟儿必然有绝佳的视力,至少集体来说是如此,它们选择性地捕食那些“次级品”,迫使竹节虫的拟态朝完美境地演化。鸟儿这一关绝对蒙混不了,不然它们的拟态绝不会如此完美,而且我们会发现拟态只有二三流水平的个体。我们如何解决这个看来难以自圆其说的难题?
1700268371
1700268372 有些学者认为鸟类的视觉与昆虫的伪装是在同一个演化时段里逐步改进的。也许吧,要是你不介意我轻浮一点,我会说鸟儿5%的视觉刚好配虫子5%的伪装,真是绝配。但是那不是我想提出的答案。事实上我觉得昆虫伪装(“拟态”)的演化,从“不怎么像”开始一直发展到完美的地步,速度非常快,而且在不同的昆虫族群中分别演化过好几次,在这段期间鸟儿的视力已经达到今日的水平。
1700268373
1700268374 其他学者提出的解答如下。也许每一种鸟儿或猴子的视力都很差,它们对昆虫感兴趣的地方只限于某一面相。也许一种猎食动物只注意颜色,另一种是形状,还有一种是质地,等等。于是只在某一方面像一根细枝的昆虫就能欺骗一种猎食动物,即使其他猎食动物还是不放过它。演化这么进行下去,昆虫的伪装便出现越来越多逼真的特征。最后,许多不同猎食动物造成的自然选择压力,合力打造出各方面都极为完美的拟态。那些猎食动物没有一个看见拟态的完美全貌,只有我们能。
1700268375
1700268376 这似乎意味着只有我们人类够聪明,才能全方位欣赏昆虫的精彩拟态。这未免太自命不凡了吧?不过我不接受这个解答,另有理由。这就是:任何猎食动物,即使在某些情况中视力极为锐利,也可能在其他情况中视力无从发挥。事实上,我们从自己熟悉的经验就足以体认“视力”不能一概而论,同一双眼睛的表现,从“不良”到“绝佳”都算正常,视状况而定。在阳光普照的大白天,鼻尖正前方20厘米的一只竹节虫,绝对难逃我的法眼。我会注意到它的长腿紧挨着躯干轮廓。我也许会注意到它的身体呈现的对称很不自然,真正的小细枝不会那么对称的。但是,要是我在傍晚穿过森林,同样的眼睛、同样的大脑可能就无法分辨颜色黯淡的昆虫与周遭触目都是的树枝。昆虫的影像也许落到我视网膜的边缘而不是视觉比较锐利的中央。昆虫也许在150米开外,落在我视网膜上的只是一个微小的影像。光线也许很差,我几乎什么都看不见。
1700268377
1700268378 事实上,昆虫与树枝的相似程度不论多么微不足道,光线、距离,还有注意力等因素,都可能使视力不弱的猎食动物误判。要是你想到一些例子,觉得怎么都不可能看错,请你将光线调暗试试,或者走远一点儿再看。我的意思是:许多昆虫因为与树枝、树叶或地面的粪粒有一丁点儿相似之处而保全了性命,当时或者它距猎食者很远,或猎食者出现时已是黄昏时分,或猎食者隔着雾在看它,或猎食者看到它时因为附近有发情的雌性而分心了。另一方面,许多昆虫因为与小树枝相似得离奇而保全了性命,因为猎食者刚好距它们很近、光线也很好,搞不好是同一头哩。无论光的强度、与猎食者的距离、影像在视网膜上的位置,以及类似的变项,重要的是它们都是连续变项。它们的测量值分布在“可见”与“不可见”这两极之间,任何一点都可以是它们的值。从“可见”与“不可见”,变化是连续的,邻近的值之间差异可以小到难以察觉的地步。这种连续变项孕育了连续、渐变的演化。
1700268379
1700268380 戈尔德施密特的问题(究竟得多相似才占得到便宜)原来根本不是问题!(戈尔德施密特对自然选择论有许多不满,那个问题只是其中之一;他出道后,有很长一段时间都在宣扬一种极端的信念:演化不是个积少成多的累进过程,而是个大破大立的跃进过程。)而且我们再度证明了“5%的视觉”也比没有视觉好。我视网膜边缘上的视力,也许还不到视网膜中央区视力的5%呢。但是我的眼角余光仍然可以侦测到大卡车或公共汽车。由于我每天骑自行车上下班,这个事实也许已救过我的性命呢。下雨天我带着帽子,要是眼睛没注意到大卡车或公共汽车,很容易就做了轮下鬼啦。在暗夜中我的视力比起日头正当午时,必然5%都不到。许多人类祖先在午夜里也许就仗着能看见紧要东西的视力,才逃过一劫——例如附近的剑齿虎或前头的悬崖——得以传宗接代。
1700268381
1700268382 我们每个人有自己的切身体验,例如在暗夜中,都知道从伸手不见五指到一目了然两者间,其实是一系列连续变化的阶段,邻近的差异简直无从分辨,可是一步一脚印,每前进一步都能享有实质利益。任何人用过可变焦距双筒望远镜,都能体会调节焦距是个连续的渐进手续,向正确焦点推进的每一小步,相对于前一步都能改善视野的清晰程度。逐渐旋转一架彩色电视机的彩色平衡旋扭,就能发现从黑白到自然彩色事实上是个连续渐变过程。虹膜控制瞳孔的大小,保护我们的视力不受强光的影响,让我们在光线微弱时也看得见东西。我们都有夜里给车头灯照得暂时失明的经验,因此可以想象没有虹膜的滋味。挺不愉快的,甚至危险,对吧?但是眼睛还不至于完全失去功能。现在你知道了吧—“眼睛有许多零件,但是它们不能各自为政,眼睛是完美的功能体,要不,就一点儿功能都没有!”(译按:这句话的意思是“不完美的”、“不完全的”眼睛不可能产生功能。)—去他的,这么说不只错了,而且不诚实,任何人只要花两秒钟回想自己熟悉的经验就不至于这么说了。
1700268383
1700268384 让我们回到问题5。好吧,人类的眼睛是从没有眼睛的情况经过一系列渐进变化的X演化出来的。那么这些X每一个都能充分发挥功能,协助主子生存与生殖吗?反对达尔文演化论(自然选择论)的学者假定答案显而易见,就是“不能”。这个答案未免天真了些,我们已经讨论过了。可是回答“对的”就很明智吗?这倒不是显而易见的,不过我认为这是正确的答案。看得见一点点比什么都看不见来得好,用不着多说。但是我还有别的理由。我们在现代的动物中也可以发现各种中间型(过渡型)的眼睛。当然,我不是说这些现代动物的眼睛都真的代表我们眼睛的祖先型。但是它们的确显示:中间型的眼睛可以运转、发挥功能。
1700268385
1700268386 有些单细胞动物体表有感光点,这一点后面有光敏色素构成的“屏幕”。这个屏幕拦截(接收)从某个方向射入的光线,动物因此对于光源有了“认知”。多细胞动物中,各种不同类型的蠕虫与一些软体动物都有类似的构造,但是含有光敏色素的细胞位于体表的一个小浅杯中。这种构造利于侦测光线的方向,因为各个细胞可以负责拦截不同方向的光线,于是就有了分工。从处于一平面上的一小群感光细胞,演化成一个浅杯,再演化成深杯,每一步无论多小,都能改进视觉。现在,要是你手边已有一个很深的“眼杯”,只要将杯四周翻下去,杯底翻上来,就成为一个没有晶状体的针孔相机了。从浅视杯到针孔相机,有一个逐步演进的连续系列。
1700268387
1700268388 针孔相机可以形成明确的影像,针孔越小,影像就越清晰(但是黯淡),针孔越大影像越明亮(但是模糊)。海洋软体动物鹦鹉螺,很像乌贼,是一种奇怪的动物,身体居住在类似菊石(鹦鹉螺的古生代祖先化石)与箭石(乌贼祖先化石)的壳里。鹦鹉螺有一对针孔相机眼睛。这对眼睛与我们的基本上形状相同,但是没有晶状体,瞳孔只是一个小孔,海水可以流入“眼球”里。实际上,鹦鹉螺是个谜。它们的祖先演化出针孔相机眼睛已经几亿年了,它们一直没有发现晶状体的奥秘吗?有了晶状体,影像就能既清晰又明亮。我替鹦鹉螺着急,因为从它视网膜的构造与功能看来,有了晶状体之后视力就可以立即改善,而且大大地改善。就像一套立体声音响,有一流的扩音器,可是唱盘上的针头却是钝的。这样的系统只消一个特定的改进手续,就不同凡响。在基因超空间里,鹦鹉螺似乎只要跨出一步就能走上一条改进之道,享受立即、明显的改良利益。可是它没有跨出这一步,为什么?英国萨塞克斯(SusseX)大学的兰德(Michael Land)一直很纳闷儿,我也很纳闷儿。是因为必要的突变无法发生,鹦鹉螺的胚胎发育过程经不起那样的折腾?我不相信,可是想不出更好的解释。至少鹦鹉螺更凸显了我们的论点:没有晶状体的眼睛比没有眼睛好。
1700268389
1700268390 有了眼杯之后,在针孔上覆盖一层物质,只要性质有一点像晶状体,都能改善影像,几乎任何凸圆的、透明的,或半透明的都成。晶状体的功能是:收集它表面上的光线,聚焦后投射在视网膜较小的面积上。只要粗糙、原始的晶状体出现了,就有连续、累进改善的机会,厚一点、透明一点,减少影像扭曲的程度这个趋势会止于至善—我们一眼就认出的真正晶状体。乌贼与章鱼是鹦鹉螺的亲戚(三者都属软体动物头足纲),它们的眼睛都有真正的晶状体,与我们的很像,不过它们的祖先是独立演化出整套照相机—眼睛的。根据兰德的推测,眼睛使用9种基本原理(机制)形成影像,在生命史上大部分都独立演化过好几次。举例来说,鹦鹉螺的眼睛使用碟形反射板机制,与我们的照相机—眼睛完全不同,可是这种机制许多不同的软体动物与甲壳类动物(节肢动物)分别“发明”过好几次。(我们制造无线电望远镜与最大的光学望远镜,也使用这种机制,因为大型镜面比大的透镜容易制造。)其他的甲壳动物拥有类似昆虫的复眼,就是一大堆微小眼睛的集合体,还有一些软体动物,我们前面说过,拥有与我们一样的照相机—眼睛,或是针孔相机眼睛。这些不同类型的眼睛,每一种都可以在现生动物中找到可算是“过渡”阶段的形式,而且都能发挥功能。
1700268391
1700268392 反演化论的宣传数据中,充满了所谓的例子,证明“复杂的系统无法通过渐进的过渡型演化出来”。不过从另一个角度来看,它们往往只不过是我们第二章谈过的“难以置信”论证,毫无价值。例如《长颈鹿的脖子》讨论过眼睛之后,继续讨论投弹手甲虫(bombardier beetle):
1700268393
1700268394 (这种甲虫)朝敌人面庞喷出一种致命的混合液体,含有对苯二酚(hydroquinone,译按:美白化妆品的主成分)与过氧化氢(即消毒用的双氧水)。这两种化学物质一旦混合就会爆炸。为了在体内安全地储存它们,投弹手甲虫演化出了一种化学抑制剂,使它们和平共存。甲虫从尾巴喷射毒液的那一刻,加入抗抑制剂,使混合液恢复爆炸性质。这个精妙的复杂、协作过程如何演化?以一系列简单的生物步骤就能完成吗?我认为完全不成。因为所涉及的化学平衡只要出了微小的差错,甲虫就会爆炸。
1700268395
1700268396 我找一位生物化学的同事要了一瓶双氧水,以及分量相当于50只投弹手甲虫体内的对苯二酚。现在我就要将它们混合。根据前述,混合液会炸到我的脸上。我已经将它们混合了……
1700268397
1700268398 哈哈,我还坐在这儿。我刚刚将双氧水倒进对苯二酚里,什么都没有发生。混合液甚至没有发热。我当然知道这么做不会有事:我才不是傻瓜呢。什么“对苯二酚与过氧化氢这两种化学物质一旦混合就会爆炸”,根本是狗屎!尽管创造论信徒辗转传抄,也没有成真。(咦!不是谎言说100遍就会成真吗?)对了,要是你对投弹手甲虫真的发生了兴趣,告诉你真相也不妨。没错,这种甲虫会喷出灼热的毒液对付敌人,正是对苯二酚与过氧化氢的混合液。但是对苯二酚与过氧化氢不会发生剧烈的反应,除非加入一种催化剂(触媒)。投弹手甲虫做的就是这事。至于这个毒液系统的演化前驱,无论过氧化氢还是对苯二酚家族,在甲虫体内都有其他用途。它们的祖先不过“征用”了两种体内早已存在的化学分子,开发出它们的新用途。通常演化就是这么回事。
1700268399
1700268400 《长颈鹿的脖子》讨论投弹手甲虫的那一页,有这么一个问题:“半个肺有什么用?自然选择会扫除配备这些怪玩意儿的生物,而不是拣选它们。”一个健康的成人,每一侧的肺都有3亿个气泡,位于分枝的气管系统中每一根支气管的尖端。这些支气管的建构方式,与第三章图2最下方的生物形很像。在那幅树形图里树枝分枝的次数是8,由“基因9”决定。所以树枝尖端的数目共有2的8次方,就是256个。图2由上到下,树枝尖端逐个加倍。为了产生3亿个分枝,只要连续加倍29次即可。请留意:从一个单独肺泡到微肺泡,有一个连续阶梯可以攀登,每登一级就多一次分枝机会。这个变化可以用29次分枝完成,我们可以天真地将这个过程想象成在基因空间中堂堂地走上29步。
1700268401
1700268402 在肺里,气管不断分枝的结果,就是表面积超过60平方米。面积是肺的重要变项,因为面积决定了肺吸收氧气、排出二氧化碳的速率。读者想必已经看出来了,面积是个连续变量。面积不是那种全有或全无的东西。面积是可以多一些或少一些的东西。肺比大多数东西还要容易逐步渐变,从0一直到60平方米。
1700268403
1700268404 许多病人动手术切除一侧的肺,仍然能四处走动,有些人肺表面积只剩下正常人的三分之一。他们也许能走,但是不能走远,也不能走得很快。那正是我想提醒读者的地方。逐渐减少肺的表面积对存活的影响,不以“全有或全无”模式表现。病人走路的能力会受影响,可是影响力以一条连续平滑的上升曲线显现,与切除面积成比例。也会以同样的模式影响余命;并不存在一个临界值,只要低于它就会送命。一旦肺的表面积低于理想值以下,死亡的概率就会大增,可是增加的模式仍然是逐步的,而不是跃进式的。(肺的表面积高于理想值的话,死亡风险也会增加,但是理由不同,与生理系统的经济规模有关,这里不赘述。)
1700268405
1700268406 我们几乎可以确定,我们最早演化出肺脏的祖先,是生活在水中的。我们观察现代鱼类,可以得到一些线索,想象它们当初是怎么呼吸的。大多数现代鱼类在水中以鳃呼吸,但是许多鱼生活在泥泞的沼泽中,必须到水面上直接吸入空气。它们嘴里的气泡可以勉强充作肺,有时气泡增大,成为富含血管的呼吸囊。我们前面已经讨论过了,一个单独的呼吸囊只要不断地分枝下去,就能发展成一个含有3亿气泡的分枝系统,像我们正常人的肺一样,也就是说想象一个气泡与3亿个气泡系统之间有一个连续的X系列并不困难。
1700268407
1700268408 有趣的是,许多现代鱼类保留了当初那个单独的气泡,赋予它完全不同的任务。虽然它当年一开始扮演的是“呼吸器”,却在演化过程中变成鳔。鳔是非常巧妙的装置,功能像水位计(hydrostat),使鱼儿能在水中一直保持平衡。动物体内要是没有空气囊,一般而言就会比同体积的水稍重一些,所以会沉到水底。鲨鱼必须不断地游动,才不致沉入水中,就是这个缘故。动物体内的空气囊若很大,像我们的肺一样,就会浮在水面上。在这两个情况之间,存在着各种可能性,空气囊要是大小适中,动物就不下沉也不浮起,而是处于水中固定深度,既稳当又不费力。这是现代鱼类(硬骨鱼)新演化出来的本领,鲨鱼这种古老鱼类(软骨鱼)就没有。现代鱼不像鲨鱼,不必浪费精力维持身体在水中的深度。它们的鳍与尾巴只需负责前进的方向与速度。它们也不需要从外界取得空气注入鳔中,它们体内有特殊的腺体制造气体。现代鱼以这些腺体与其他方法准确地调节鳔里的气压,精确地维持身体在水中的平衡。
1700268409
1700268410 有几种现代鱼可以离水而居。最极端的例子是印度攀鲈(Indian climbing perch),它几乎不必回到水中。它独立演化出一种不同的肺—围绕着鳃的气囊。其他的鱼基本上仍是水栖动物,但是会登陆做短暂的停留。我们的祖先大概也这么干过。它们的登陆活动值得一谈,因为登陆的时间可以连续变化,从永久到零。要是你是一条鱼,主要在水中生活、呼吸,偶而登陆冒险一回,也许只是在干旱时期不甘坐以待毙,所以“走出去”,从一个泥坑转进另一个泥坑,要是你有半个肺,甚至1%个肺,生机都能提升。你的肺究竟原始到什么程度都没有关系,重要的是:那个肺可以让你在陆上生存得久一点。时间是连续变量。水中呼吸与空气呼吸的动物并没有截然的区别。不同的动物或者花99%的时间在水中,或者98%、97%等等,直到0%。这一路上,肺的面积哪怕只增加一点点都能增加存活的能力。这是一条连续、渐进的道路。
1700268411
1700268412 半个翅膀有什么用?翅膀怎么开始演化的?许多动物从一棵树跳到另一棵树,有时跌落地面。特别是小动物,可以用整个身体表面兜住空气,协助它们穿梭树间,或者阻止跌势。任何增加身体表面积与重量比例的趋势都有帮助,例如在关节处长出一片皮肤褶。于是朝向滑翔翼演化的一系列连续、渐变的X就有可能出现了,这整个演变的终点就是可以上下扑动的翅膀。用不着说,最早拥有原始翅膀的动物有些距离跳不过。同样用不着多说的是:无论原始的翅膀有多原始、多粗陋,只要能增加身体的表面积,就能协助主子跳过某个距离,而没有翅膀硬是跳不过。
1700268413
1700268414 另一方面,要是原始翅膀的功能是阻止动物的跌势,你不能说:“除非那翅膀达到一定尺寸,否则一点用也没有。”我们已经讨论过了,最初的翅膀无论是什么德行都不重要。世上必然有个高度,没有配备原始翅膀的个体要是坠落地面,一定摔断脖子,而配备了的,就能幸存。在这么一个关键高度,任何提升身体表面积的改进(以有效阻止跌势),都攸关生死。所以自然选择青睐那不起眼的原始翅膀。一旦族群中几乎个个都配备了原始翅膀,决生死的高度就会稍稍提升一点。因此原始翅膀的任何增长都能判阴阳、别幽明。如此这般,叫人赞叹的翅膀终于出现了。
1700268415
[ 上一页 ]  [ :1.700268366e+09 ]  [ 下一页 ]