1700271044
事实上,细胞与各种动物、植物和真菌有许多共同特征。它们生长、繁殖、自我维持,而在这一过程中,它们都展现出了一种目的性:不管怎样都必须坚持下去,必须活下去,必须繁殖,将生命延续下去。所有的细胞——从列文虎克在齿间发现的细菌,到让你读到这些文字的神经元——和所有的生物都具有这些特性。了解细胞的运作原理,我们就离了解生命的运作原理更近了一步。
1700271045
1700271046
细胞存在的核心是基因,也就是我们接下来要讨论的主题。每一个细胞都用基因编码指令来构建和组织自己,当细胞和有机体繁殖时,它们必须把这些基因指令传承给新世代。
1700271047
1700271048
注释:
1700271049
1700271050
[1] 鲁道夫·菲尔绍(1821—1902),细胞病理学创始人。他认为每种疾病基本上都是细胞的疾病。他于1847年首次识别出了白血病。——如无特别说明,本书脚注均为译者注。
1700271051
1700271052
1700271053
1700271054
1700271056
五堂极简生物课 二 基因The Gene
1700271057
1700271059
时间的考验The Test of Time
1700271060
1700271061
1700271062
1700271063
1700271064
我有两个女儿和四个外孙。他们每个人都是独一无二的。具体来说,我有个女儿叫萨拉,是电视制作人,另一个女儿叫埃米莉,是物理学教授。但她们都有某些共同点,她们和各自的孩子,和我还有我妻子安妮,也有一些共同点。家人间的相似之处可能很明显,也可能微乎其微——身高、眼睛的颜色、嘴角或鼻子的弧度,甚至某些独特的习惯或面部表情。尽管存在各种各样的变化,但不可否认的是:某些特点是世世代代连续传承的。
1700271065
1700271066
父母与其后代有相似性,这是一切生物有机体的决定性特征。亚里士多德和其他古代哲人早就认识到了这一点,但生物遗传的基础究竟是什么,仍是个未解之谜。千百年来,人们给出了各种解释,其中有些在今天听来匪夷所思。比如亚里士多德的猜想:母亲影响了腹中胎儿的发育,就像特定的土壤质量影响了种子生长为植株。另一些人则认为是因为“血液混合”,也就是说,后代继承的是父母双方的特征混合后的平均值。
1700271067
1700271068
基因的发现为我们铺平了道路,让我们得以更现实地理解遗传是如何进行的。基因不仅提供了一种解释,帮助我们理解既有相似性又有独特性的复杂家族遗传方式,也是最关键的信息来源,生命用它来构建、维持和繁殖细胞,乃至最终用细胞组成生物体。
1700271069
1700271070
格雷戈尔·孟德尔(Gregor Mendel)是史上第一个对遗传奥秘有所认知的人,他曾在如今的捷克共和国境内的布尔诺的修道院担任院长。不过,他的这一成就并非因为研究了人类家庭中时常令人费解的遗传模式,而是因为他在用豌豆植株做了无数细致的实验后,孵化出了新的观点,并最终引导我们发现了如今被称作基因的物质。
1700271071
1700271072
孟德尔不是第一个用科学实验提出遗传问题的人,甚至也不是第一个通过植物寻找答案的人。早期的植物育种家已经描述了植物的某些特性是以何等出人意料的方式代代相传的。两种不同的亲本植物杂交后的新一代植株有时看起来就像两种亲本的混合体。比如,一株紫花植物和一株白花植物杂交,可能产生一株粉花植物。但在某一代中,某些特征似乎总是能凌驾于别的特征之上。比如,一株紫花植物和一株白花植物的后代只会开出紫色的花。早期先驱者们收集了很多耐人寻味的线索,但没有一个人能对植物基因的遗传方式做出令人满意的解释,更不用说解释基因在我们人类——毋宁说一切生物中——是如何运作的了。然而,孟德尔对豌豆的研究揭示的恰恰就是这一点。
1700271073
1700271074
1981年,冷战中期,我独自前往布尔诺的奥古斯丁修道院朝圣,想去看看孟德尔工作过的地方。当时,那里还没有像如今这样成为一个旅游景点。花园大得令人咋舌,草木杂乱疯长。我很容易想象出那个场景:孟德尔曾在那儿种过一排又一排的豌豆。他之前曾在维也纳大学攻读自然科学,但没能考取教师资格。然而,物理学习过程中的一些心得让他深受裨益。他清楚地了解到自己需要大量数据:样本越多,就越可能揭示出重要的模式。他的一些实验,样本多达10 000株豌豆。在他之前,没有哪个植物育种家做过要求如此严格、数量如此之多的定量实验。
1700271075
1700271076
为了降低实验的复杂程度,孟德尔把重点放在了那些能呈现出明显差异的生物特征上。他用了好多年,仔细记录他设定的杂交的结果,发现了一些被别人忽略了的规律。最重要的是,他观察到那些豌豆植株表现出的或缺乏的性状——比如特定的花色或种子形状——之间是成特殊的算数比的。孟德尔所做的重要工作之一就是用数学方法来描述这些比例。他由此得出结论:豌豆花蕊里的雄性花粉和雌性胚珠含有他称之为“因子”的东西,这些遗传因子与亲本植物的不同性状有直接关联。不同的因子通过授粉结合后,会影响下一代植株的性状。只不过,孟德尔还不知道这些因子是什么,又是如何发挥作用的。
1700271077
1700271078
无独有偶,差不多就在孟德尔做豌豆实验的同一时期,另一位著名的生物学家查尔斯·达尔文也在研究金鱼草花的杂交实验,这种巧合耐人寻味。达尔文也注意到了类似的比例,但他没有试图去解释其背后的深意。不管怎样,孟德尔的成果几乎被他同时代的人完全忽视了,整整一代人后,人们才认识到他的发现有多么重要。
1700271079
1700271080
1900年前后,有些独立工作的生物学家们重现了孟德尔的实验结果,并对其加以发展,提出有关遗传方式的更明确的预测。孟德尔遗传学说(以这位堪称先驱的修道士的名字命名)由此诞生,遗传学也自此创立,引起了全世界的关注。
1700271081
1700271082
孟德尔遗传学说指出,遗传特征是由实际存在的粒子决定的,这些粒子总是成对存在,也就是孟德尔所说的“因子”,我们现在称之为“基因”。孟德尔遗传学说并未过多言及这些粒子是什么,但它用一种非常明确的方式阐述了这些粒子是如何遗传给下一代的。最重要的是,事态渐渐明朗了:这些结论不仅适用于豌豆,也适用于所有有性繁殖的物种——从酵母到人类,以及介于这两者之间的所有生物。你的每一个基因都是成对存在的,分别遗传自你的亲生父母。在受孕的那一刻,通过精子和卵子融合,基因被传递给了你。
1700271083
1700271084
19世纪的最后30多年里,也就是孟德尔的发现未被世人关注的那段时间里,科学并没有停滞不前。尤其值得一说的是,研究者们终于更为清晰地观测到了处于分裂过程中的细胞。最终,当这些观察结果与孟德尔遗传学说提出的遗传粒子联系在一起时,担当生命主角的基因就成了万众瞩目的焦点。
1700271085
1700271086
早期观测发现的线索之一是细胞内很像细线的微观结构。这种结构在19世纪70年代由德国细胞生物学家瓦尔特·弗莱明(Walther Flemming)首次发现,他曾是一位军医。在当时最先进的显微镜的帮助下,弗莱明描述了这些极其微小的细线是以何等有趣的方式活动的。细胞准备分裂时,弗莱明看到这些细线纵向地分为两半,然后变短变粗。接着,随着整个细胞一分为二,这些细线也分离开,分别包含在新形成的两个子细胞中。
1700271087
1700271088
弗莱明亲眼观测到的——但当时没能完全理解的——就是孟德尔遗传学说提出的遗传粒子,也就是基因的实体表象。弗莱明所说的“细线”就是我们现在说的“染色体”。染色体是所有细胞中包含基因的实体结构。
1700271089
1700271090
大约在同一时期,还出现了一条关于基因和染色体的关键线索,来自令人意想不到的观测对象:寄生蛔虫的受精卵。比利时生物学家爱德华·凡·贝内登(Edouard van Beneden)在仔细观察蛔虫发育的最早期阶段时,通过显微镜看到每个已受精的新胚胎的第一个细胞都含有4条染色体:从卵子和精子中分别得到的两条染色体。
1700271091
1700271092
这完全符合孟德尔遗传学说的预测——两组成对基因,在受精的那一刻融合在一起。凡·贝内登的结果后来得到了多次证实。卵子和精子中各有一半染色体,当两者融合成受精卵时,全部数量的染色体随之汇合。现在我们已经知道,有性繁殖的蛔虫是这样的,包括人类在内的所有真核生物也都是这样的。
1700271093
[
上一页 ]
[ :1.700271044e+09 ]
[
下一页 ]