打字猴:1.700271108e+09
1700271108 后来,我有幸和晚年的克里克和沃森成了朋友。他们两人特别互补。弗朗西斯·克里克思维敏捷,逻辑清晰。他会把问题无限切分,直到问题在他的凝视下消融,这话毫不夸张。詹姆斯·沃森有天赋异禀的直觉,能在别人还没有头绪的时候就有所断定,尽管他并不总是清楚自己是如何得出结论的。两人都很自信,直言不讳,与年轻的科学家们保持高度互动,虽然有时会批评他们。克里克和沃森联手,就是一个超级强悍的组合。
1700271109
1700271110 他们推导出的DNA双螺旋结构非常美妙,但真正的美妙之处并不在于螺旋结构本身的优雅,而在于这个结构能完美地解释遗传物质必须做到的、用以确保生命生存和延续的两大关键任务。第一,DNA必须能够对细胞和整个生物体生长、存续和繁殖所需的信息进行编码。第二,DNA必须能够精确、可靠地自我复制,确保每个新细胞和每个新生命体都能继承一整套遗传指令。
1700271111
1700271112 DNA的螺旋结构可以解释这两大关键任务,你可以把螺旋结构看作一架扭曲的梯子。现在,让我们来看看DNA是如何携带信息的。每个梯级都由成对的化学分子链接起来,这些化学分子被称为核苷酸碱基。碱基有四种不同的类型,我们可以将其简写为A、T、G和C,分别指代腺嘌呤(adenine)、胸腺嘧啶(thymine)、鸟嘌呤(guanine)和胞嘧啶(cytosine),这四种碱基沿着DNA阶梯的两条轨道或者链排列,起到储备信息代码的作用。这就好比一串有序排列的字母传达出了特定的语义,组成了你正在阅读的这句话。每个基因都是一条含有细胞信息的DNA编码。而所谓的信息则可能产生某种色素的指令,以此确定眼睛的颜色,让豌豆花的细胞变成紫色,又或是让肺炎细菌变得更具毒性。细胞“阅读”了基因编码,从DNA中获取信息,并将这些信息付诸应用。
1700271113
1700271114 接下来,DNA需要进行精确的复制,以便把基因中的所有信息忠实地传递给下一代细胞或生物体。组成梯级的两个核苷酸碱基的形状和化学性质确保了碱基只能以单一的、精准的方式配对。A只能与T配对,G只能与C配对。也就是说,如果知道DNA一条链上的碱基排列顺序,你就能立刻判断出另一条链上的碱基排列顺序。因此,如果你把双螺旋的两条链拆开,每一条都可以作为模板,完美地复制出原来那条成对的链。克里克和沃森发现DNA的构建方式后,立刻就意识到:细胞肯定就是这样复制DNA,并构建出携带基因的染色体的。
1700271115
1700271116 基因通过指导细胞制造特定的蛋白质,来对细胞的运作,乃至最终对整个生物体的运作产生重大影响。这个信息堪称生命的基点,因为在细胞中,蛋白质完成了大部分工作——细胞里的大部分酶、细胞结构和操作系统都是由蛋白质构成的。为了做到这一点,细胞要在两种文字间进行翻译:由A、T、G和C组成的“DNA文字”,以及由20种基本组成部分——氨基酸——有序链接而成的、更复杂的“蛋白质文字”。时值20世纪60年代初,基因和蛋白质之间的这种基本关系已广为人知,但还没有人知道细胞是如何将DNA文字转化为蛋白质文字的。
1700271117
1700271118 这种被称作“遗传密码”的关联给生物学家摆了一道真正的加密难题。20世纪60年代末至70年代初,许多研究者前仆后继,终于破解了这个密码。其中,我最熟悉的是弗朗西斯·克里克和西德尼·布伦纳(Sydney Brenner)[5] 。西德尼是我见过的最机智、最不走寻常路的科学家。他曾经面试过我(我没有得到那份工作),在面试过程中,他把业界同僚比作挂在他办公室墙上的毕加索名画《格尔尼卡》中的疯魔形象。他的幽默基于这种出人意料的类比,我猜想,这也是他作为科学家所拥有的强大创造力的源泉。
1700271119
1700271120 他们和其他破译者的研究表明,由四个字母组成的DNA文字沿着DNA梯级边的两条链排列,每三个字母组成一个“单词”,这些短单词大部分都对应蛋白质的一个特定氨基酸。比如,DNA“单词”GCT告诉细胞在新蛋白质中添加一种叫作丙氨酸的氨基酸,另一个“单词”TGT则要求添加名为半胱氨酸的氨基酸。你可以把基因视为制造某种特定蛋白质所需的DNA单词序列。比如,人类基因中的β-球蛋白的基本信息包含在由441个DNA“字母”(核苷酸碱基)拼出的147个由3个字母组成的DNA“单词”里,细胞读懂后,将其转化为由147个氨基酸组成的蛋白质分子。β-球蛋白有助于形成红细胞中运载氧气的色素,即血红蛋白,使你的身体保持活力,并让血液看起来是红色的。
1700271121
1700271122 理解了遗传密码,就能解决生物学核心领域中最重要的难题,解释储存在基因中的静态指令是如何转化为活跃的蛋白质分子,从而构建和运作活细胞的。破解基因密码为当代生物学家们描述、解读和修改基因序列铺平了道路。当时,这一突破性进展显得极其重要,以至于有些生物学家暂停了研究,认为细胞生物学和遗传学的最基本问题已得到解决。甚至,弗朗西斯·克里克也决定将他的研究重点从细胞和基因转移到人类意识的奥秘上。
1700271123
1700271124 时至今日,50多年过去了,这个课题显然还没有终结,根本谈不上尘埃落定。不过,生物学家们还是取得了巨大的进展。在不到一个世纪的时间里,人们对基因的认识——从一个抽象元素开始——发生了天翻地覆的变化。到1973年,我完成博士学位后,基因已不再是一个概念,或只是染色体的一部分。基因是一长串DNA核苷酸碱基序列,作用是对蛋白质进行编码,让它在细胞中有精确的功能。
1700271125
1700271126 生物学家们很快就掌握了一些技能:如何找出特定基因在染色体上的位置,如何提取它们并在染色体之间移位;甚至将其插入不同物种的染色体中。举例来说,20世纪70年代末,大肠杆菌的染色体被重组拼接,使其含有可以调节血糖的胰岛素蛋白的人类基因编码。这些转基因细菌可以自行产生足量的胰岛素蛋白质,和人类胰腺产生的胰岛素蛋白质完全一样。自那时起,这种转基因技术已帮助了世界各地数百万糖尿病患者控制血糖。
1700271127
1700271128 20世纪70年代,英国生物化学家弗雷德里克·桑格(Fred Sanger)研发了一种读取基因信息的方法,这是一次重大的技术创新。他独树一帜地结合了化学反应和物理方法,能够鉴定出基因的所有核苷酸碱基的特性和序列(DNA测序)。不同基因中,DNA字母的数量跨度极大,有的包含几百个碱基,有的则多达数千个碱基,能够读取它们并预测它们将产生什么样的蛋白质无疑是一次巨大的进步。弗雷德里克是个特别谦逊的人,又格外有成就,最终两度荣获诺贝尔奖!
1700271129
1700271130 到20世纪末,我们已经能对整个基因组——也就是细胞或生物体中存在的全套基因或遗传物质,包括人类基因组——进行测序。到2003年为止,人类基因组的所有30亿个DNA字母已基本完成了首次完整测序。这是生物学和医学向前迈出的重要一步,此后进步的脚步也未曾减慢。虽然第一次基因组测序花费了十年时间和20多亿英镑,但今天的DNA测序机器可以在一两天内完成同样的工作,只需要几百英镑。
1700271131
1700271132 人类基因组计划的早期成果中,最重要的一项是列出了大约22 000个蛋白质编码基因,这些基因是全体人类共有的,构成了人类遗传的基础。这些基因规定了我们共同的特征,另一方面也决定了我们作为独特的个体所拥有的遗传特征。光靠这些基因的信息还不足以解释人类是什么,但如果没有它们,我们的理解绝不可能是完整的。这就好比你有了一份人物列表——这个清单是必要的起点,但接下来更大的任务是写一出戏,并找到能诠释这些角色的演员。
1700271133
1700271134 而在“细胞”和“基因”这两个概念之间,细胞分裂的过程起到了至关重要的桥梁作用。细胞每次分裂,细胞内所有染色体上的所有基因都必须先被复制,然后在两个子细胞内平均分配,因此,基因复制和细胞分裂必须同步进行,密切配合。要不然,细胞会因为缺乏所需的全套基因指令而死亡,或功能失常。这种配合是通过细胞周期——调控每个新细胞诞生的精妙过程——来实现的。
1700271135
1700271136 DNA的复制发生在细胞周期的早期,DNA合成的时期被称作S期,新复制的染色体分离发生在后期,即有丝分裂的过程。这就确保了细胞分裂后产生的两个新细胞各自拥有完整的基因组。细胞周期里的这些事件证明了一个重要的生命特征:这些事件都是基于化学反应发生的,尽管是高度复杂的反应,但就事论事地说,这些反应本身不能被认为是有生命的。只有当创造一个新细胞所需的数百个化学反应一起发生,形成一个执行特定目的的整体系统时,生命才算开始。这就是细胞周期对细胞所做的贡献:它激活了生物体内DNA复制的化学反应,并由此实现细胞繁殖的目的。
1700271137
1700271138 我20岁出头时就认识到细胞周期对理解生命有多么重要,那时我在诺里奇的东英吉利大学读研究生,正在寻找一个研究课题来继续学术生涯。然而,当时我并没有想到,自己在20世纪70年代启动的研究项目竟会延及一生中的大部分时间,成为我毕生研究的热情所在。
1700271139
1700271140 和细胞生命中的大多数事件一样,细胞周期是由基因及其产生的蛋白质运作的。多年来,我的实验室的长远目标就是找到运作细胞周期的特定基因,继而找出它们的运作原理。为此,我们选用了裂殖酵母(一种在东非用于制造啤酒的酵母),因为它虽然相对简单,但其细胞周期与许多其他生物体——包括像我们这样更大的多细胞生物体——的非常相似。我们开始寻找和细胞周期有关的、含有基因突变的酵母菌株。
1700271141
1700271142 “突变”这个词语在遗传学家那里是有特定含义的。突变的基因不一定是畸形的或破损的,而是仅仅意味着基因的不同变体。孟德尔杂交出了不同的植物品种,比如开紫色花或白色花的植株,它们之所以不同,就是因为一个对决定花色而言很重要的基因发生了突变。按照这个逻辑,眼睛颜色不同的人也可以被认为是人类的基因突变品种。所以,在各种变异体中,究竟哪一种才该被视为“正常”,这种说法通常毫无意义。
1700271143
1700271144 基因的DNA序列被改变、重组或删除时就会发生突变。突变常常是细胞受损的结果——比如紫外线辐射或化学损伤——或是在DNA复制和细胞分裂的过程中偶发错误所致。细胞自带复杂精妙的机制,可以发现并修复这些错误,这就意味着:突变往往是非常罕见的现象。据估计,平均下来,每次细胞分裂只会发生三次小突变,这意味着每复制十亿个DNA字母才会出现一次突变,出错率非常低。但是,一旦发生突变,就会产生不同形式的基因,继而改变蛋白质,进而改变继承它们的子代细胞的生物性状。
1700271145
1700271146 通过改变基因的工作方式,有些突变会成为创新之源,这偶尔非常有用;但在大多数情况下,突变会让基因无法执行其适当的功能。有时,仅仅一个DNA字母的改变,就会造成很大影响。比如,一个孩子继承了两个β-球蛋白基因变体,其上只有一个DNA碱基出现了变异,但他的血红蛋白色素就会因此不能充分发挥作用而患上名为镰状细胞病的血液病。
1700271147
1700271148 为了搞清楚裂殖酵母细胞是如何控制细胞周期的,我到处寻找无法正常分裂的酵母菌株。我知道,只要找到这些突变体,我们就能锁定运作细胞周期的基因。所以,我和实验室的同事们开始寻找细胞无法分裂但仍能生长的裂变酵母突变体。在显微镜下很容易发现这些细胞,因为它们没有分裂却在不断生长,因此大得异乎寻常。多年来,确切地说是40多年来,我们的实验室发现了500多个这样的大细胞酵母菌株,这些菌株确实都有突变,导致细胞周期中特定事件所需的基因失去了活力。这意味着至少有500个基因参与了细胞周期,约占10%——在裂殖酵母中总共发现了5000个基因。
1700271149
1700271150 我们就这样向前迈进了一步,因为这些基因显然是酵母细胞完成细胞周期所需要的。不过,它们并不一定都是控制细胞周期的。你可以想一想汽车的工作原理,汽车出故障的时候,很多部件都会让车停下来,比如车轮、车轴、底盘或发动机。它们固然都很重要,但都不是驾驶者用来控制行驶速度的部件。我们真正想找到的是加速器、变速箱和刹车。说回细胞周期,我们要找的是控制细胞完成细胞周期的速度的基因。
1700271151
1700271152 研究过程中,我在极其偶然的情况下无意间发现了第一个控制细胞周期的基因。我清楚地记得那一刻:1974年,当时我正用显微镜费力地寻找更多异常增大的突变酵母细胞菌落——这活特别累人,因为在我所观察的每10 000个菌落中,大概只有1个是真正值得研究下去的。我常常要花整整一上午或一下午才能找到一个这样的突变体,有些日子里则根本找不到。那天,我突然注意到一个菌落,里面的细胞异常小。起初,我以为有细菌污染了皮氏培养皿[6] ,这种失败相当常见。再仔细观察后,我意识到它们可能意味着更有趣的东西。它们有没有可能就是酵母菌突变体,因为还没来得及生长就急速完成了细胞周期,所以分裂出的细胞体积较小?
1700271153
1700271154 事实证明,这个思路是正确的,突变的细胞里确实有一个基因变了,而这个基因恰好控制了细胞进行有丝分裂和细胞分裂的过程,进而影响了整个细胞周期的完成速度。这正是我希望找到的基因。这些细胞就像一辆加速器出了故障的汽车,汽车——在实验里就是细胞周期——的速度因此被加快了。我称这些小个头的菌株为“wee”突变体,因为它们是在爱丁堡被首次分离出来的,wee在苏格兰语中就是小的意思。我必须承认,半个世纪前抖的小机灵现在看来实在太小儿科了!
1700271155
1700271156 后经研究表明,第一个wee突变体里的变异基因与另一个更重要的基因共同起了作用,而后者恰恰是控制细胞周期的核心。随着研究继续进行,又有一些出人意料的偶发事件让我找到了第二个很难找到的控制基因。我一连几个月都在分离小个头细胞wee突变体的各个菌落,费尽千辛万苦收集到了近50种。这比找异常大号的细胞突变体更难,每找一个就要花费将近一周的时间。难上加难的是,我煞费苦心找出来的大多数菌株都含有同一基因的突变体,差异很有限,深入研究的意义不大,我当时将其称为“wee1”。
1700271157
[ 上一页 ]  [ :1.700271108e+09 ]  [ 下一页 ]