打字猴:1.700271147e+09
1700271147
1700271148 为了搞清楚裂殖酵母细胞是如何控制细胞周期的,我到处寻找无法正常分裂的酵母菌株。我知道,只要找到这些突变体,我们就能锁定运作细胞周期的基因。所以,我和实验室的同事们开始寻找细胞无法分裂但仍能生长的裂变酵母突变体。在显微镜下很容易发现这些细胞,因为它们没有分裂却在不断生长,因此大得异乎寻常。多年来,确切地说是40多年来,我们的实验室发现了500多个这样的大细胞酵母菌株,这些菌株确实都有突变,导致细胞周期中特定事件所需的基因失去了活力。这意味着至少有500个基因参与了细胞周期,约占10%——在裂殖酵母中总共发现了5000个基因。
1700271149
1700271150 我们就这样向前迈进了一步,因为这些基因显然是酵母细胞完成细胞周期所需要的。不过,它们并不一定都是控制细胞周期的。你可以想一想汽车的工作原理,汽车出故障的时候,很多部件都会让车停下来,比如车轮、车轴、底盘或发动机。它们固然都很重要,但都不是驾驶者用来控制行驶速度的部件。我们真正想找到的是加速器、变速箱和刹车。说回细胞周期,我们要找的是控制细胞完成细胞周期的速度的基因。
1700271151
1700271152 研究过程中,我在极其偶然的情况下无意间发现了第一个控制细胞周期的基因。我清楚地记得那一刻:1974年,当时我正用显微镜费力地寻找更多异常增大的突变酵母细胞菌落——这活特别累人,因为在我所观察的每10 000个菌落中,大概只有1个是真正值得研究下去的。我常常要花整整一上午或一下午才能找到一个这样的突变体,有些日子里则根本找不到。那天,我突然注意到一个菌落,里面的细胞异常小。起初,我以为有细菌污染了皮氏培养皿[6] ,这种失败相当常见。再仔细观察后,我意识到它们可能意味着更有趣的东西。它们有没有可能就是酵母菌突变体,因为还没来得及生长就急速完成了细胞周期,所以分裂出的细胞体积较小?
1700271153
1700271154 事实证明,这个思路是正确的,突变的细胞里确实有一个基因变了,而这个基因恰好控制了细胞进行有丝分裂和细胞分裂的过程,进而影响了整个细胞周期的完成速度。这正是我希望找到的基因。这些细胞就像一辆加速器出了故障的汽车,汽车——在实验里就是细胞周期——的速度因此被加快了。我称这些小个头的菌株为“wee”突变体,因为它们是在爱丁堡被首次分离出来的,wee在苏格兰语中就是小的意思。我必须承认,半个世纪前抖的小机灵现在看来实在太小儿科了!
1700271155
1700271156 后经研究表明,第一个wee突变体里的变异基因与另一个更重要的基因共同起了作用,而后者恰恰是控制细胞周期的核心。随着研究继续进行,又有一些出人意料的偶发事件让我找到了第二个很难找到的控制基因。我一连几个月都在分离小个头细胞wee突变体的各个菌落,费尽千辛万苦收集到了近50种。这比找异常大号的细胞突变体更难,每找一个就要花费将近一周的时间。难上加难的是,我煞费苦心找出来的大多数菌株都含有同一基因的突变体,差异很有限,深入研究的意义不大,我当时将其称为“wee1”。
1700271157
1700271158 后来,在一个阴雨连绵的星期五下午,我又发现了一个wee突变体。这一次,我的培养皿肯定是被污染了:培养皿和那些引起我注意的异常小的酵母细胞都被一种侵入培养皿的真菌的长卷须覆盖住了。我很疲惫,心里很清楚:清除这种程度的真菌污染太费劲了,不仅费工夫,还特别枯燥乏味。无论如何,我估摸这种新菌株很有可能还是含有同一基因的另一种变异形式,也就是说还是wee1。我把整个培养皿扔进垃圾箱,回家喝茶去了。
1700271159
1700271160 那天晚上,我对自己的做法深感愧疚。万一这个突变体和其他50个wee突变体不一样呢?那天,爱丁堡的夜晚又黑又潮湿,但我还是骑上自行车,回到了山上的实验室。接下来的几周里,我设法将新的wee突变体从侵入的真菌中分离了出来。之后,令我喜出望外的是,事实证明,这不是wee1基因的另一种变体,而是一个全新的基因,并且它最终成为一把钥匙,解开了基因如何控制细胞周期的奥秘。
1700271161
1700271162 我称这个新发现的基因为细胞分裂周期2(cell division cycle 2),简称cdc2。回想起来,我时常后悔:要是当时能给这个细胞周期谜团的核心部件取一个更优雅,至少是更容易让人记住的名字,那该多好啊!毕竟,你将在本书的后半段看到更多关于cdc2的内容。
1700271163
1700271164 事后看来,这一切——无论是做还是想——都真的很简单。运气也非常重要:先是意外发现了第一个wee突变体,我甚至没有特意寻找它;再是命运的转折,让我从垃圾箱里捡回了“失败”的实验品,最终找到了控制细胞周期的核心。在科学研究领域,简单的实验和思维可以带来惊人的启迪,尤其是在辛勤工作、保持希望的基础上,当然还有偶然的幸运加持。
1700271165
1700271166 我在爱丁堡默多克·米奇森教授的实验室工作时所做的大部分都是这样的简单实验,当时我还是个年轻的初级研究员,刚结婚没多久。默多克为我提供了实验所需的空间和设备,也对我的实验提出了无数建议和意见。尽管他付出了这么多,却不让我在任何一篇论文上把他列为合作作者,因为他觉得自己贡献得还不够多。当然,事实并非如此。我在从事科学工作过程中所体会到的最重要的一点,正是这种慷慨,而这种气度本该得到世人更多的关注。默多克是个很有趣的人。除了我刚才说的慷慨,他还有些害羞,并且全身心地沉浸在自己的研究中。他不在乎别人是否对他做的事情感兴趣,他只踩着自己的鼓点前进。如果默多克还在世,可能不会同意我在这里特别提到他,但我想特别感谢他,因为是他让我明白了:为什么最好的研究既有强烈的个人色彩,又是完全共享的。
1700271167
1700271168 生命的存在离不开基因:每一代新细胞、新生物体都必须继承生长、活动和繁殖所需的基因指令。这意味着,生命要想长期存在,基因必须能够非常精确、小心地复制自己。只有这样,DNA序列才能在多次细胞分裂中保持不变,基因才能经受住“时间的考验”。细胞以令人惊诧的精准性实现了这一点。我们身边处处可见细胞的成果。有22 000个基因控制着你的细胞,其中绝大多数基因的DNA序列与当今地球上所有其他人的几乎完全相同。在很大程度上,你的基因DNA序列和远在几万年前的史前深处,靠打猎和采集果实为生,围着篝火讲故事的人类祖先的DNA序列也难以区分。满打满算,使你的先天特征与我的先天特征,以及我们俩与史前祖先的先天特征不同的突变,加起来只占你的DNA密码总量的一小部分——还不到1%。这是21世纪遗传学的重大发现之一:在不同性别、种族、宗教和社会阶层中,我们的基因组——每个人都有多达30亿个DNA字母——都非常相似。全世界都该重视这个关乎平等的重要证据。
1700271169
1700271170 但是,我们也不能无视基因中携带的那些零散的变异。虽然总量很少,但它们可以对我们个体的生物学历史和生命史产生很大的影响。比如,有些变异是我和女儿,还有孙辈共有的,这解释了我们作为一个家族在某些方面的相似性。还有些基因变异是我们每个人独有的,在一定程度上使我们成为独特的个体,或多或少、或强或弱地影响了我们的身体样貌、健康和思维方式。
1700271171
1700271172 遗传学塑造了我们的自我认知和世界观,对所有人的生活都非常重要。人过中年,我发现了一些关于自己的基因的非常惊人的事实。我生长在一个工人阶级家庭,父亲在工厂工作,母亲是清洁工。我的哥哥姐姐都在15岁时辍学,只有我继续读书,后来还考上了大学。我的童年过得很快乐,该有的都有,哪怕有点老土。我的父母比我朋友们的父母年长,我常开玩笑说,这感觉就像我是被祖父母带大的。
1700271173
1700271174 多年后,我得到了新工作,在纽约洛克菲勒大学担任校长,并去申请了绿卡,以便在美国长住。令我吃惊的是,我的申请被拒绝了。美国国土安全部说,这是因为我一直使用的出生证上没有列出父母的名字。我一怒之下寄出申请信,要求完整的新版出生证明。但当我打开那封装着新证明的信后,我震惊了。新证明表示,我的父母并不是我的父母——他们其实是我的外公外婆。我的亲生母亲其实是我的姐姐。原来,她17岁时怀了孕,但当时的社会认为未婚生子是很可耻的行为,所以她被送到了诺威奇的姑姑家,而我就是在那儿出生的。她带我回到伦敦后,外婆为了保护自己的女儿,就假扮成我的母亲,把我抚养成人。发现这件事后,我觉得最大的讽刺莫过于,虽然我是个遗传学家,但我竟然不知道自己的遗传信息!所有可能知情的人都过世了,所以事实上,我至今仍不知道自己的亲生父亲是谁:在我的出生证上,本该是他名字的地方只有一条横线。
1700271175
1700271176 所有个体出生时都自带新鲜的遗传变异,数量相对来说很少,多半是随机发生,并非从亲生父亲或母亲那儿继承来的。这种遗传差异不仅决定了生物个体的独特性,也解释了为何物种不会长期稳定不变。生命始终在试验、创新和适应,生命改变世界的同时,世界也在随之改变。为此,基因必须在变与不变之间保持平衡:既要保持恒定以保存信息,又要兼具改变的能力——有时甚至是实质性的改变。下一个概念将向我们展示基因是如何做到这一点,并让生命展现出令人目眩神迷的多样性的。
1700271177
1700271178 这个概念就是自然选择的进化。
1700271179
1700271180 注释:
1700271181
1700271182 [1] 奥斯瓦尔德·埃弗里(1877—1955),美国医生、最早的分子生物学家之一、免疫化学先驱。
1700271183
1700271184 [2] 罗莎琳德·富兰克林(1920—1958),英国化学家与X射线晶体学家。她分辨出了DNA的两种构型,并成功地拍摄到了DNA晶体的X射线衍射照片。
1700271185
1700271186 [3] 雷蒙德·戈斯林(1926—2015),英国科学家,曾跟随莫里斯·威尔金斯和罗莎琳德·富兰克林从事研究工作,是DNA结构的推导者之一。
1700271187
1700271188 [4] 莫里斯·威尔金斯(1916—2004),英国分子生物学家。因解开了DNA分子结构以及一些相关研究,他与弗朗西斯·克里克、詹姆斯·沃森共同获得了1962年的诺贝尔生理学或医学奖。
1700271189
1700271190 [5] 西德尼·布伦纳(1927—2019),南非生物学家,分子生物学奠基人之一,2002年获得诺贝尔生理学或医学奖。
1700271191
1700271192 [6] 作细菌等培养用的有盖玻璃碟。
1700271193
1700271194
1700271195
1700271196
[ 上一页 ]  [ :1.700271147e+09 ]  [ 下一页 ]