打字猴:1.700271711e+09
1700271711
1700271712 我想不出比这更优雅的解决方案了:这些线性碳基聚合物的多种布局既能生成化学性质稳定的信息储存装置,又能产生高度多样化的化学活动。我发现,生命的化学的这一面既极其简单,又卓越非凡。生命体将复杂的高分子化学与线性信息存储相结合的方式实在令人叹服,我推测,这个原理不仅是地球生命体的核心,也很可能是宇宙中任何地方的生命的核心构造。
1700271713
1700271714 尽管我们和所有已知的生命形式都依赖于碳基聚合物,但我们对生命的思考不应该受制于地球上的生物化学经验。我们可以天马行空地去想象,宇宙中其他地方的生命以别的方式运用碳,甚或压根就不是构建于碳基之上的生命体。比如说,英国化学家和分子生物学家格雷厄姆·凯恩斯-史密斯(Graham Cairns-Smith)[3] 就曾在20世纪60年代构想了一种原始的生命形式,它会基于结晶状黏土颗粒进行自我复制。
1700271715
1700271716 凯恩斯-史密斯想象中的黏土颗粒是以硅为基础的,科幻小说作家都很热衷于幻想硅基外星生物。和碳原子一样,硅原子最多可以组成四个化学键,我们已经知道它们可以形成聚合物:硅酮密封胶、黏合剂、润滑剂和厨具的主要成分都是硅。原则上,硅基聚合物可以很大,而且多样,足以包含生物信息。然而,尽管硅在地球上的含量远远高于碳,地球上的生命却是基于碳的。这或许是因为在地球表面的现成条件下,硅不像碳那么容易与其他原子形成化学键,因而不能为生命制造出足够的化学多样性。不过,如果在假想地外生命时彻底排除硅基生命,或完全基于其他化学成分的生命,觉得它们不可能在宇宙中其他地方的不同条件下茁壮生长成生命体,就太愚蠢了。
1700271717
1700271718 思考生命是什么时,人们很容易在生命和非生命之间划出一条鲜明的分界线。细胞显然是有生命的,所有由细胞集合而成的生物体也是有生命的。但也有居于两者之间、类似生命的形态。
1700271719
1700271720 病毒是个很好的例子。它们是有基因组的化学实体,有的基于DNA,有的基于RNA,包含了制造包裹每个病毒的蛋白质外衣所需的基因。病毒可以通过自然选择进化,这一点符合马勒的定义,但别的方面就不那么清晰了。尤其是从严格意义上说,病毒不能自我繁殖。相反,它们繁殖的唯一途径是感染生物体的细胞,劫持被感染细胞的新陈代谢。
1700271721
1700271722 所以,当你感冒时,病毒会进入你的鼻腔细胞,利用它们的酶和原料来反复多次地繁殖病毒。随着病毒大量滋生,鼻子里受感染的细胞破裂并释放出了成千上万的感冒病毒。这些新的病毒会感染附近的细胞,并进入你的血液,继而感染其他地方的细胞。这是一种非常有效的策略,可以让病毒持续存在,但这也意味着病毒不能脱离其宿主的细胞环境单独运作。换句话说,它完全依赖于另一个生命体。你差不多可以这样说:在宿主细胞中具有化学活性和繁殖能力时,病毒是活着的,但当它在细胞外作为化学惰性病毒存在时,它又不算是活着的,病毒就在这两种状态间不断切换。
1700271723
1700271724 有些生物学家就此得出结论,病毒的存续严格依赖于另一个生命体,这就意味着病毒不是真正的生命体。但我们还要记住很重要的一点:几乎所有生命形态,包括我们人类,也都依赖于其他生命体。
1700271725
1700271726 你很熟悉的身体,其实是一个由人类细胞和非人类细胞的混合物组成的生态系统。我们自身有30万亿左右的细胞,但生活在我们身上和我们体内的细菌、古细菌、真菌和单细胞真核生物等不同群落的细胞总量远远超过这个数字。许多人还携带着比它们更大的动物,包括各种肠道蠕虫,生活在我们皮肤上并在我们的毛囊中产卵的八条腿的小螨虫。在这些与我们亲密无间的非人类同伴中,有很多都严重依赖我们的细胞和身体,但我们也依赖其中的一些。比如,内脏中的细菌会产生某些我们自身的细胞无法制造的氨基酸或维生素。
1700271727
1700271728 我们也不应该忘记,我们吃的每一口食物都是由其他生物体制造的。甚至有许多微生物,比如我研究的酵母菌,也完全依赖于通常由其他生物体制造的分子。比如那些包含葡萄糖和氨的分子,这些成分是制造含碳和氮的大分子所必需的。
1700271729
1700271730 植物似乎更加独立。它们可以吸收空气中的二氧化碳、地里的水,并利用太阳能来合成它们需要的许多更加复杂的分子,包括碳基聚合物。但即便是植物,也要依赖在根部或根部附近发现的细菌,从空气中捕捉氮。没有那些细菌,植物就不能制造构成生命的大分子。事实上,据我们目前所知,没有任何一种真核生物能够独自办成这件事。这就意味着,没有任何一种已知的动物、植物或真菌物种能够完全从零开始、赤手空拳地完成产生自身细胞的化学过程。
1700271731
1700271732 因此,要说真正独立的生命体——堪称完全独立,能无牵无绊地自由生活的——恐怕就是那些乍一眼看起来相当原始的生命形式了。其中包括微型蓝藻,通常被称为蓝绿藻,它们既能进行光合作用,又能自己捕获氮;还有古细菌,它们能从海底火山的热液喷口获取所需的能量和化学原料。这太令人震惊了:这些相对简单的生物不仅比人类生存的时间长得多,还比我们更加自立。
1700271733
1700271734 不同生命形式间的深度相互依存也反映在我们细胞的基本构成中。产生我们身体所需能量的线粒体原本是完全独立的细菌,它们掌握了制造ATP的能力。但在15亿年前,命运发生了一些意外的转折,有些线粒体细菌住进了另一种类型的细胞内。随着时间的推移,宿主细胞变得极其依赖这位入驻的细菌客人所制造的ATP,以至于让线粒体成了永久住客,成为细胞内的固定装置。这种互利关系得以巩固,很可能标志着整个真核生物系的开始。有了可靠的能量供应来源,真核生物的细胞就拥有了变得更大、更复杂的能力。反过来,这又促成了动物、植物和真菌演化出今天这般繁茂的多样性。
1700271735
1700271736 这一切都表明,生物体有一个分级的渐变光谱,从完全依赖他者的病毒,到更为自给自足的蓝藻、古细菌和其他众多植物。我坚持认为这些不同的形态都是有生命的,因为它们都是自我导向的有形实体,可以通过自然选择来进化,虽然它们也在不同程度上依赖于其他生物体。
1700271737
1700271738 从这种更广泛的生命观出发,我们看待生命世界的眼光也会变得更丰富。地球上的生命都从属于一个单一的、巨大的、相互关联的生态系统,其中包含了所有生物。这种基本的关联不仅来自生命体之间相互依存的深刻关系,还源于一个事实:追根溯源,所有生命体都有一些共同的进化根源,因而在基因层面相互关联。长久以来,生态学家一直很赞成这种深层关联、相互关联的生命观。这个观点最早源于19世纪初的探险家、自然学家亚历山大·冯·洪堡的思想,他认为所有生命都被一个互相连接的网络关联在一起。这种相互关联性是生命的核心,虽然这么说可能让人意外,但应该能让我们有充分的理由停下来,更深入地思考人类活动对生态世界里的其他生命体造成了怎样重大的影响。
1700271739
1700271740 生命之树分杈繁密,生活在不同分支上的生物体的种类之多,令人震惊。但是,即便是这样丰富的多样性,在更重大、更基本的相似性面前也会逊色几分。作为化学、物理和信息机器,所有生物体运作的基本细节是相同的。比如,生物体都用相同的小分子ATP作为能量货币;都依赖DNA、RNA和蛋白质之间的基本关系;都使用核糖体来制造蛋白质。弗朗西斯·克里克认为,从DNA到RNA再到蛋白质的信息流是最根本的生命特性,所以,他把这种关系称作分子生物学的“中心法则”。后来,有人指出了一些法则外的小特例,但克里克的核心观点依然屹立不倒。
1700271741
1700271742 所有生命的化学基础中的这些深刻共性,指向了一个令人瞩目的结论:如今地球上的生命只发生了一次。如果不同的生命形态各自独立地出现了好几次,并存活下来,那么,它们的后代能以如此相似的方式进行基本运作的可能性微乎其微。
1700271743
1700271744 如果所有的生命都栖居于同一棵巨大的生命之树,那么,这棵大树是从什么样的种子生长出来的呢?不知何故,在很久很久以前的某个地方,无生命的化学物质从无序状态排列成有序组织,以使它们延续,自我复制,并最终获得最重要的通过自然选择进化的能力。但这个故事,也就是我们人类的故事,到底是怎么开始的呢?
1700271745
1700271746 地球形成于45亿多年前,太阳系诞生之初。在最初的5亿年左右,地球表面特别热,极不稳定,不具备让我们所知的生命出现的条件。目前发现的最古老的生物化石可以确定是存活于35亿年前。这就意味着,生命的出现是在那几亿年中发生的。这个时间段非常漫长,并不是我们的大脑能轻易想象和理解的,但相对于地球上生命的历史总长,几亿年只是一小段时间。在弗朗西斯·克里克看来,在现有的时间总长内,生命似乎根本不可能在地球上从无到有。所以,他提出生命肯定是在宇宙的其他地方出现的,被以部分或以完整的形态送到了地球。但这更像是逃避,而非回答生命如何从微不足道的起点开始出现这一关键问题。今天,我们可以对这个故事做出一番能让人信服的描述,哪怕目前还无法全部得到证实。
1700271747
1700271748 最古老的化石看起来和今天的一些细菌非常相似。这说明当时的生命形态可能已经相当完备,有被细胞膜包裹的细胞,有基于DNA的遗传系统,有基于蛋白质的新陈代谢。
1700271749
1700271750 但最先出现的是什么呢?以DNA为基础的基因复制?以蛋白质为基础的新陈代谢?还是将细胞封闭起来的细胞膜?在今天的生物体中,这些小系统形成了一个相互依存的大系统,并且必须作为一个整体才能正常工作。储存在DNA中的基因只有在蛋白质酶的协助下才能自我复制。但是,蛋白质酶必须根据DNA中的信息指令来构建。怎么能撇开一个去谈另一个呢?还有一个事实是:基因和新陈代谢都依赖于细胞外膜把必要的化学物质聚集在细胞内,捕捉能量,并保护它们不受外界环境影响。但我们知道,今天的活细胞都是用基因和酶来构建它们复杂的膜的。基因、蛋白质和细胞膜组成关键的三位一体,所以很难想象其中的任何一个怎么单独出现。只要你拿走一个元素,整个系统就会迅速崩溃。
1700271751
1700271752 在这三者中,解释细胞膜的形成可能是最容易的。我们知道,构成细胞膜的那种脂质分子可以通过自发的化学反应来形成,这些反应涉及的物质和条件在年轻的地球上应该已经存在。当科学家们将这些脂质放入水中后,它们会有一些让人意想不到的表现:它们会自发地组合成由膜封闭的中空球体,球体的大小和形状与一些细菌细胞差不多。
1700271753
1700271754 膜封闭实体可以自发形成,如果这套机制足以采信,那么,就剩下DNA基因和蛋白质谁先来的问题了。针对这个特殊的“先有鸡还是先有蛋”的问题,科学家们找到的最佳答案是:没有先后!反倒是DNA的化学表亲RNA可能最先出现。
1700271755
1700271756 和DNA一样,RNA分子也可以储存信息。它们也可以被复制,复制过程中的错误也会导致变异。这意味着RNA可以作为一种能进化的遗传性分子运作。直到今天,基于RNA的病毒仍然如此行事。RNA分子的另一个关键特性是它们可以折叠,形成更复杂的三维结构,可以作为酶发挥作用。基于RNA的酶完全没有蛋白质酶那么复杂,也没那么多功能,但它们可以催化某些化学反应。比如,对如今的核糖体的功能至关重要的几种酶就是由RNA制成的。如果将RNA的这两种特性结合起来,也许能够产生既能作为基因又能作为酶的RNA分子:把遗传系统和简单的新陈代谢打包在一个袋子里。这就等同于有了一个能够自我维持、以RNA为基础的生命体。
1700271757
1700271758 一些研究人员认为,这些RNA生命体最早可能形成于深海热液喷口周围的岩石中。岩石中的微小孔隙可能提供了一个保护它们的环境,与此同时,从地壳中沸腾而出的火山活动提供了稳定的能量和化学原料。这种情况下,制造RNA聚合物所需的核苷酸有可能通过更简单的分子组装,完成从无到有的过程。起初,嵌在岩石中的金属原子可能起到了化学催化剂的作用,使化学反应无须生物酶的帮助就能进行。最终,经过几千年的试错和试对,这一过程可能最终催生出了由RNA构成的机体,这些机体是有生命的,能自我维持和自我复制,并且,在未来的某个时候,它们可能会被纳入膜封闭实体中。那应当算是生命出现的漫长道路中的第一个里程碑事件:第一批真正的细胞出现了。
1700271759
1700271760 我给你们描述的这番演变看似真实可信,但请记住,这也是高度猜测性的结论。第一批生命形态没有留下任何痕迹,所以我们很难得知生命之初发生了什么,甚至很难确定35亿多年前的地球本身到底处于什么状态。
[ 上一页 ]  [ :1.700271711e+09 ]  [ 下一页 ]