1700431884
1700431885
使用筹码跟踪数据
1700431886
1700431887
使用筹码标签的一个明显优点是可以准确地跟踪每位玩家下的赌注。标签可以保证玩家在经常性的玩家活动中赚到所有的积分,不会多也不会少。这就给玩家和赌场同时带来了好处。对于赌场而言,资源可以更准确地配置给正确的玩家,过度奖励错误的玩家和过少奖励正确的玩家都会导致有限营销资源的非最优分配,而玩家当然希望他们的积分永远准确无误。
1700431888
1700431889
有了玩家的赌注数据,赌场就可以更好地对玩家进行分类,以理解投注模式。谁会每次先下注5美元,但几乎每隔一段时间就把投注升到100美元呢?谁会每次下注10美元?可以根据这些模式对玩家进行分类。投注模式还能揭示21点博彩游戏中谁在算牌,因为如果玩家使用算牌技巧的话,某种赌注模式就会凸显出来。
1700431890
1700431891
赌场使用筹码跟踪技术,玩家想要主动欺骗赌场将会变得更困难,甚至连庄家想犯错都比较困难。因为筹码的投注和分红都可以被跟踪到,我们可以很容易地回过头来对比视频,检查21点某一次出牌或者分红的结果。即使胳膊和头挡住了我们的视线,看不清楚拿起来或者放下去的筹码,但RFID数据依然可以提供细节信息。赌场可以识别发生的错误或者欺诈。譬如说当庄家往另一个方向看的时候,玩家放下了一笔筹码。
1700431892
1700431893
时段分析可以识别出庄家或玩家犯下异常错误的数目。它可以帮助我们处理欺诈活动,或者对犯下大量简单错误的庄家进行额外培训。筹码计算错误也会因之而下降,统计大量各种面额的筹码是非常单调的工作,人们往往会在这个过程中犯错,RFID支持更快更准确的计算。
1700431894
1700431895
将前面这个例子讲得更深入一点儿,对小偷来说,跟踪每个筹码的举措具有相当强的威慑作用。如果一摞筹码被偷走了,那些筹码的标识就会被标记成“已被偷”。如果有人进来兑换这些筹码,甚至拿着这些筹码坐到桌子旁边,系统就会注意到,并拉响安全警报。如果小偷偷走或者更换了这些筹码,那标签就不能被读取。赌场清楚筹码的ID,它们希望所有的筹码都报告一个合法的ID。如果某个筹码没有报告ID,或者报告的ID不合法,那它们就会采取措施。
1700431896
1700431897
就像其他行业一样,赌场对欺诈行为阻止得越多,分红就会越合理,风险也就会越低。因为费用支出比较少,这样我们就有能力给玩家提供更好的服务和投注赔率。对于赌场和玩家而言,这是双赢。
1700431898
1700431900
3.7 工业发动机和设备:传感器数据的价值
1700431901
1700431902
世界各地安装了许多复杂的机器和发动机,例如,飞机、火车、军车、建筑设备、钻孔设备等。因为造价昂贵,保持这些设备的稳定运转是非常重要的。近些年来,从飞机发动机到坦克等各种机器上也开始使用嵌入式传感器,目标是以秒或毫秒为单位来监控设备的状态。
1700431903
1700431904
监测工作可以做得相当细,特别是在测试和开发过程中。例如,当新的发动机开发出来,就得依靠获取到的足够多的细节信息,来检查发动机是否可以按照预期设定的方式工作。一旦新发动机进入市场,再想更换有缺陷的部件的花费会相当高,因此我们需要事先详细地进行性能分析。监测是一项不断持续的活动。也许我们并不需要持续收集每一毫秒的细节信息,但如果能够收集到大量的细节信息,我们就可以评估该设备的生命周期,识别出重复出现的问题。
1700431905
1700431906
例如,发动机传感器可以收集到从温度到每分钟转数、燃料摄入率再到油压级别等信息,而数据可以根据预先设定的频率获取。当读数频率、读取指标数量和监控项目数量增加时,数据量会迅速增加。为什么我们要关心这一点?下面我们来看一些例子。
1700431907
1700431908
使用传感器数据
1700431909
1700431910
发动机的结构很复杂,有很多移动部件,必须在高温下运转,会经历各种各样的运转状况。因为它们的成本太高,所以期望寿命越长越好。因此,稳定的、可预测的性能就变得异常重要,因为机器的寿命依赖于此。例如,对故障飞机进行保养维修会花掉航空公司或者空军部队一笔不小的钱,但这种事情我们还必须做,因为我们要识别出飞机是否存在安全隐患。因此,飞机或者飞机发动机以及其他设备的停机时间一定要降到最低,航空公司或者空军部队对此都有非常迫切的需求。
1700431911
1700431912
停机时间最小化策略包括准备备件或后备发动机快速割接时需要维修的设备、从诊断结果中快速识别需要更换的部件、针对问题部件投资开发更可靠的新版本。要想有效实施这3种策略,必须得有数据。我们要用数据生成诊断算法,或者用数据作为输入来诊断某个特定的问题。工程部门可以使用传感器数据准确地定位问题的原因,设计新的措施支持更长、更可靠的操作。不管发动机是飞机的,还是船只的,或者是陆地设备的,这些考虑因素都适用。
1700431913
1700431914
通过提取和分析详细的发动机运转数据,我们可以精确地定位那些会导致立即失效的某些模式。然后我们就能识别出会降低发动机寿命的时间分段模式以及更加频繁的维修。多个变量的排列组合数目,特别是一段时间内的排列组合数目,使得这类数据分析活动变成了一项挑战。这个过程不仅会涉及到大数据,就连随之开发出来的分析也会变得异常复杂和困难。以下是我们可以研究的一些问题。
1700431915
1700431916
■ 压力骤然下降是否表示一定就会出问题?
1700431917
1700431918
■ 温度在几小时内持续下降是否意味着还有其他问题?
1700431919
1700431920
■ 振动水平异常是否意味着有问题?
1700431921
1700431922
■ 发动机启动时的飞速转动是否让某些部件的性能严重受损,而且还会增加维修的次数?
1700431923
1700431924
■ 几个月内油压一直比较低,是否会使发动机的某些部件受损?
1700431925
1700431926
结构化数据内缺少结构性
1700431927
1700431928
传感器数据给我们带来了一个非常艰巨的挑战。虽然我们收集到的数据是结构化的,独立的数据元素也很好理解,但元素之间的时间关系和模式却根本无法理解。延时和无法测量的外部因素增加了问题的复杂性。如果要考虑所有的信息,识别各种数据长期的作用效果,这个过程会异常复杂。拥有结构化数据并不一定能够保证分析方法就是高度结构化和标准化的。
1700431929
1700431930
在出现严重问题的时候,先回头去检查当时发生了什么,一直检查到问题自己露出马脚,这种做法会非常奏效。传感器的作用类似于依靠飞机黑匣子的帮助诊断失事原因。发动机传感器数据可以用于诊断活动和研究行为。从概念上讲,相对于先前我们讲到的汽车保险案例中的信息服务设备,我们这里讨论的传感器是一种更复杂的形式。传感器不断感知周围环境并获得数据信息,这是大数据世界中反复讨论的一个主题。虽然我们这里讨论的是发动机,但传感器还有数不清的各类用途,这里讨论的原则也同样适用。
1700431931
1700431932
如果大量传感器都长时间重复着传感器数据收集流程,那会产生大量丰富的分析数据。只要好好地分析这些数据,就能发现设备的缺陷,就有机会主动修复这些问题。我们还可以把设备中的弱点先行识别出来。随后,我们可以制定好流程,缓解这些发现带来的问题。这些措施带来的收益不止是安全级别的提升,还会让我们的成本下降。使用传感器数据,发动机和设备都会更加安全,能够提供服务的时间就会比较长,这样运营会比较平稳,成本也会比较低。这是一种通赢的做法。
1700431933
[
上一页 ]
[ :1.700431884e+09 ]
[
下一页 ]