1700494335
秘书问题是一个近乎完美的数学难题:问题本身表述简单,解题难度非常高,答案简洁明了,而影响力又足以让人产生浓厚的兴趣。因此,通过人们的口口相传,这个问题以燎原之势在20世纪50年代的数学界迅速蔓延开来。1960年,在伽德纳专栏的推波助澜之下,它又大大地激发了普通大众的想象力。至20世纪80年代,秘书问题已经变成了一个研究分支,无数人撰文讨论这个问题及与其相关的变体。
1700494336
1700494337
至于这个问题是如何与秘书产生联系的,这是一个非常有意思的过程——每种文化的社会偏爱都会对社会的形式系统产生影响。例如,在我们的心中国际象棋是中世纪欧洲人的象征,但是实际上国际象棋起源于8世纪的印度。15世纪,粗暴的“欧洲化”过程把沙阿(即国王)变成了王,维齐尔(即高官)变成了王后,而大象则成了基督教主教的形象。最优停止问题同样有多种不同化身,每种化身都是当时关注热点的某种反映。19世纪,最优停止问题的典型形式是巴洛克彩票和女性挑选求婚者的行为;20世纪初,常见的表现形式是驾车度假的人挑选宾馆、男性选择约会对象;在官僚作风盛行、男性占主导地位的20世纪中叶,最典型的最优停止问题是讨论男性老板如何挑选女性助手的问题。第一次明确提出“秘书问题”的是发表于1964年的一篇论文,自此之后,这个名称就再也没有发生变化。
1700494338
1700494339
[1]正文加粗字体在本书中指的是算法。
1700494340
1700494341
1700494342
1700494343
1700494345
算法之美:指导工作与生活的算法 37%从何而来?
1700494346
1700494347
在选择秘书时,遴选程序停止过早或者过晚都会导致不理想的结果。停止过早,最优秀的申请人还没有得到亮相的机会;停止过晚,就说明你在为一位根本不存在的更优秀的申请人保留这份工作。要取得最理想的结果,显然需要在两者之间找到最合适的平衡点,在甄选时既不可迟迟不决,又不可草草收手。
1700494348
1700494349
如果找到最优秀申请人是你追求的唯一目标,那么在整个面试过程中,只要不是已有申请人当中的最优秀人选,你都不会接受。但是,仅仅达到“目前最佳”这个条件,还不足以说服面试官。比如说,第一名申请人毫无疑问就符合这个条件。一般而言,我们有理由相信,随着面试程序不断进行下去,出现“目前最佳”申请人的概率将不断下降。例如,第二名申请人是截至目前最优秀申请人的可能性是50%,第五名的可能性只有1/5,第六名的可能性只有1/6,以此类推。因此,随着面试工作的深入,目前为止最优秀申请人一旦出现,必然会令人眼前一亮(别忘了,根据定义,这名申请人比之前所有申请人都更加优秀),不过,这种可能性在不断降低。
1700494350
1700494351
所以说,看到第一个目前最优秀申请人就欣然接受(也就是说,面试第一名申请人之后就结束面试程序),显然是过于草率了。在一共有100名申请人时,也不能因为第二名申请人比第一名申请人更优秀就迫不及待地选择他,因为这种做法同样有些操之过急。那么,我们到底该怎么办?
1700494352
1700494353
凭直觉,我们可以找到几种应对的办法。例如,当第三次(或者第四次)出现胜过前面所有的申请人时,就把工作机会交给他。或者,在连续多个申请人都不理想的情况下,一旦出现一名目前为止最优秀的人选,就毫不犹豫地接受他。
1700494354
1700494355
但是,事实证明,所有这些相对来说似乎有道理的策略都算不上是最明智的做法。事实上,效果最佳的做法是接受所谓的“摸清情况再行动准则”(look-then-leap rule):事先设定一个“观察”期,在这段时间里,无论人选多么优秀,都不要接受他(也就是说,你的任务就是考察目标,收集数据)。“观察”期结束之后,就进入了“行动”期。此时,一旦出现令之前最优秀申请人相形见绌的人选,就立即出手,再也不要犹豫了。
1700494356
1700494357
考虑申请人数极少时的秘书问题,“摸清情况再行动准则”就会自动显露出来。如果只有一名申请人,这个问题就非常简单——接受她的申请!如果有两名申请人,无论你如何选择,你成功选到优秀人选的概率都是50%。你可以接受第一名申请人(此时,她是半程最优秀申请人),或者拒绝她,而拒绝第一名申请人就意味着接受第二名申请人(她也是半程最优秀申请人)。
1700494358
1700494359
如果有第三名申请人,情况就一下子变得有意思了。如果随机选择一名申请人,得到理想结果的概率是1/3,也就是33%。有两名申请人时,我们没有办法取得比碰运气更好的结果。那么,在有三名申请人时,会怎么样?事实证明,我们可以取得更理想的结果,而其中的关键就在第二场面试。在面试第一名申请人时,我们没有任何信息——她肯定是目前最优秀的申请人。在面试第三名申请人时,我们没有任何能动性——我们只能将工作机会交给这名申请人,因为我们已经拒绝了其他人的申请。但是,在面试第二名申请人时,我们既掌握了一些信息,又有一定的能动性——我们知道她与第一名申请人相比孰优孰劣,同时我们既可以接受她,也可以拒绝她。如果她比第一名申请人优秀,我们接受她,反之就拒绝她,那么会产生什么样的结果?事实上,在有三名申请人时,这是最理想的方案。令人吃惊的是,在有三名申请人时采用这个方法,与有两名申请人时选择半程最优秀人选的方法相比,效果不相上下。[1]
1700494360
1700494361
在有4名申请人时,穷举所有可能的情况之后就会发现,我们仍然应该在面试第二名申请人时采取行动;如果一共有5名申请人,我们应该等到面试第三名申请人时才采取行动。
1700494362
1700494363
随着申请人数不断增加,观察与行动之间的分界线正好处在全部申请人37%的位置,从而得出了37%法则:在考察前37%[2]的申请人时,不要接受任何人的申请;然后,只要任何一名申请人比前面所有人选都优秀,就要毫不犹豫地选择他。
1700494364
1700494365
表1-1 挑选秘书的最优方案
1700494366
1700494367
1700494368
1700494369
1700494370
事实证明,利用这种最优方案,我们选中最优秀申请人的概率为37%。方案本身与出现理想结果的概率正好相等,这是这类问题表现出来的令人奇怪的数学对称性。上表列出了申请人数不同时的秘书问题最优解决方案。从中可以看出,随着申请人数不断增加,取得理想结果的概率(以及从观察期切换到行动期的时间点)在37%左右。
1700494371
1700494372
采用最理想的方案也会有63%的失败率,这是一个令人警醒的事实。在面对秘书问题时,即使我们采取了最理想的行动方案,在大多数情况下也会遭遇失败,也就是说,大多数情况下我们都无法选中所有人选当中最优秀的那名申请人。对于把爱情视为寻觅“真命天子”的人来说,这确实是一个坏消息。不过,也不完全都是坏消息。直觉告诉我们,随着申请人数的不断增加,选中最优秀申请人的可能性将稳步下降。例如,如果采用随机选择的方式,在申请人总数为100时,我们得到理想结果的可能性是1%,在总人数为100万时,可能性就会降到0.0001%。但是,令人意想不到的是,秘书问题的计算结果不会发生变化。如果采用最优停止理论,在100人当中选中最优秀申请人的可能性是37%。而总人数是100万时,无论你相信与否,你得到理想结果的可能性仍然是37%。因此,申请人总数越多,最优算法理论就越有价值。的确,在大多数情况下,大海捞针都会无功而返,但是,无论“海洋”多么辽阔,最优停止理论都是最理想的工具。
1700494373
1700494374
[1]采用这个方案,最优秀申请人落选与得不到面试机会的概率分别是33%和16%。具体来说,三名申请人正好有6种可能的排序,即1-2-3、1-3-2、2-1-3、2-3-1、3-1-2和3-2-1。如果考察第一名申请人并选择比她优秀的那名申请人,这个方案会在3种情况下(2-1-3、2-3-1、3-1-2)取得成功,在另外三种情况下将得到不理想效果,其中两种情况(1-2-3、1-3-2)会导致过度挑剔的问题,一种情况(3-2-1)会导致挑选不够充分的问题。
1700494375
1700494376
1700494377
1700494378
1700494380
算法之美:指导工作与生活的算法 情场上的出手时机
1700494381
1700494382
托马斯·马尔萨斯
1700494383
1700494384
两性之间的情欲几乎不会随着时代的变迁而发生改变。在代数学上,我们可以称之为给定量。
[
上一页 ]
[ :1.700494335e+09 ]
[
下一页 ]