打字猴:1.700495849e+09
1700495849
1700495850 或者你的一个朋友已经和某人约会了一个月,希望得到你的建议:邀请他们一起参加即将到来的人的婚礼是否太早?这种关系已经有了一个良好的开端,但是什么时候开始制订计划比较合适呢?
1700495851
1700495852 谷歌的研究部主任彼得·诺维德曾进行过一次题为“数据的不合理有效性”的著名演讲,该演讲深究了“数十亿琐碎的数据点最终如何能被理解”。媒体不断告诉我们,我们生活在一个“大数据时代”,计算机可以筛选这数十亿的数据点并发现一些肉眼看不到的细节。但跟日常生活联系最密切的问题往往是另一种极端。我们的生活充满“小数据”,我们就像看到柏林墙的戈特一样,也就是通过一个单一的观察,做一个推论。
1700495853
1700495854 那么我们一般怎么做呢?我们又应该怎样做?
1700495855
1700495856 故事发生在18世纪的英国,那时,有一个研究领域对伟大的数学思想家来说是不可抗拒的(对那些神职人员也是如此),那就是赌博。
1700495857
1700495858
1700495859
1700495860
1700495861 算法之美:指导工作与生活的算法 [:1700494155]
1700495862 算法之美:指导工作与生活的算法 贝叶斯牧师的倒推理
1700495863
1700495864 大卫·休谟
1700495865
1700495866 因此,如果我们相信过去的经验,并把它作为我们判断未来的标准,那这些标准就一定不是确定的。
1700495867
1700495868 250年前,贝叶斯牧师就很重视小数据预测问题,他来自英国迷人的温泉城镇坦布里奇韦尔斯,是一位长老会的牧师。
1700495869
1700495870 贝叶斯设想,如果我们买10张新的、不熟悉的抽奖彩票,其中有5张中奖,那么要估计中奖概率就似乎相对容易:5/10,或50%。但是,如果我们只买了一张彩票,并赢得奖品呢?我们真的认为中奖的概率就是1/1,或是100%的?这似乎过于乐观,不是吗?如果是这样的话,那中奖概率应该是多少?我们应该猜多少呢?
1700495871
1700495872 对于那些曾在不确定性推理历史上产生如此重大影响的人来说,贝叶斯自己的故事也具有讽刺的不确定性。他出生于1701年或者1702年,出生地是英国的赫特福德郡,或是伦敦。在1746年,或1748年,或1747年,抑或是1749年,他写了一篇在数学界最具影响力的论文,他却未将它发表,并继续做其他事情。
1700495873
1700495874 在这两个事件之间我们有了更多的把握。作为牧师的儿子,贝叶斯去爱丁堡大学学习神学,并像他父亲一样被任命为牧师。他对数学和神学感兴趣,并在1736年为牛顿全新的“微积分”理论写了一篇慷慨激昂的辩护书,以回应乔治伯克利主教对牛顿的攻击。这使他在1742年当选为皇家学会的成员,并被赞誉为“擅长几何、数学和哲学学习的绅士”。
1700495875
1700495876 1761年贝叶斯去世后,他的朋友理查德·普莱斯被要求整理他的数学论文,看是否有可发布的内容。一篇文章引起了他的兴趣,并令他特别兴奋——他说这篇文章“极为出色,值得保存”。这篇论文就论述了本文所讨论的彩票问题:
1700495877
1700495878 让我们想象一个人在抽奖的时候,对会不会中奖完全不知道,也不知道中奖和无奖的比例如何。让我们进一步假设,他要从他之前了解到的无奖的数量来推测相对的中奖数量,并询问他在这些情况下能做出什么合理的结论。
1700495879
1700495880 贝叶斯的关键见解是,试图使用我们看到的中奖和未中奖彩票来分析彩票来源于整体彩票池的方法,本质上是在倒推。他说,要做到这一点,我们需要先用假设向前推理。换句话说,我们首先需要确定,如果各种可能场景都成真的情况下,我们中奖的可能性有多少。这个被现代统计学家称为“可能性”的概率给了我们解决问题所需要的信息。
1700495881
1700495882 例如,假设我们买了三张彩票,三张都中奖了。现在,如果这种彩票中奖率特别高,所有彩票都能中奖,那我们的买三中三的中奖率就肯定会一直发生,在这种情况下就是100%的概率。但如果只有一半的彩票能中奖,那我们三张彩票的中奖率就是1/2×1/2×1/2,也就是1/8。如果1000张彩票只有一张能中奖,那么我们的中奖率将是1/1000×1/1000×1/1000,也就是1×10-9。
1700495883
1700495884 贝叶斯认为,因此我们应该判断如何能让所有彩票都尽可能中奖而不是一半能中奖,或者尽可能使一半的彩票中奖而不是1/1000。也许我们生来便拥有这种直觉,但贝叶斯的逻辑思维却给我们提供了为这种直觉定量的方法。在同等条件下,我们应该想象成所有彩票都中奖的概率比一半中奖的概率要高8倍,因为我们在这种情况下买的彩票正好是8倍多的中奖概率(100%与1/8)。同样的,一半的彩票中奖的概率正好是1000张中一张中奖的1.25亿倍,我们已经通过比较1/8和1×10-9而得知其中的原因。
1700495885
1700495886 这是贝叶斯论证的关键所在。从假设的过去向前推理,并奠定了理论基础,让我们可以向后找到最大的可能性。
1700495887
1700495888 这是一个巧妙和创新的方法,但它对抽奖问题没能提供一个完整的答案。普莱斯在向皇家学会提交贝叶斯的研究结果时,他能够确定,如果你买了一张彩票并中奖了,那么至少有一半的彩票都能中奖的概率是75%。但是,考虑概率的概率问题会让人有点儿头晕。更重要的是,如果有人在催促我们:“好吧,但是你认为彩票的中奖率到底是多少?”我们仍然不知道该说什么。
1700495889
1700495890 如何将所有可能的假设提取到单一的期望值,这一问题将在短短几年后由法国数学家皮埃尔·西蒙·拉普拉斯解答。
1700495891
1700495892
1700495893
1700495894
1700495895 算法之美:指导工作与生活的算法 [:1700494156]
1700495896 算法之美:指导工作与生活的算法 拉普拉斯定理
1700495897
1700495898 1749年,拉普拉斯生于诺曼底,他父亲送他到一所天主教学校,并希望他成为神职人员。拉普拉斯继续在卡昂大学学习神学,他不像贝叶斯那样一生都能平衡对神学和科学的奉献,因此他最终放弃了做牧师,而专攻数学。
[ 上一页 ]  [ :1.700495849e+09 ]  [ 下一页 ]