打字猴:1.700495892e+09
1700495892
1700495893
1700495894
1700495895 算法之美:指导工作与生活的算法 [:1700494156]
1700495896 算法之美:指导工作与生活的算法 拉普拉斯定理
1700495897
1700495898 1749年,拉普拉斯生于诺曼底,他父亲送他到一所天主教学校,并希望他成为神职人员。拉普拉斯继续在卡昂大学学习神学,他不像贝叶斯那样一生都能平衡对神学和科学的奉献,因此他最终放弃了做牧师,而专攻数学。
1700495899
1700495900 1774年,在完全不知道贝叶斯以前做的工作的情况下,拉普拉斯发表了一篇雄心勃勃的论文,名为“事件原因的概率论”。在这篇论文中,拉普拉斯终于解决了如何从观察到的效果向后推理并找出可能的原因这一问题。
1700495901
1700495902
1700495903 如我们所见,贝叶斯找到了一种比较两种假设的相对可能性的方法。但是在彩票这一问题上,这里的假设几乎就是无穷的——每一个中奖彩票可能的比例。利用微积分这一曾备受争议却受到贝叶斯坚决拥护的数学学科,拉普拉斯能够证明这个巨大范围的可能性,这可以提取成一个单一的预估值和一个非常简洁的数字。他表示,如果我们提前真的不知道彩票的情况,然后当我们第一次买的三张彩票中的一张彩票中奖了,我们可以推测奖池里彩票的总中奖比例为2/3。如果我们买三张彩票,都中奖了,那我们可以推测总中奖比例正好是4/5。事实上,如果买n张彩票共w张中奖,那么中奖率就是中奖数加1,除以所购买的数目加2,即。
1700495904
1700495905 这种令人难以置信的简单的方法估计概率的简单方法被称为拉普拉斯定律,它很容易就能适用于任何你需要通过历史事件来评估概率的情况。如果你做了10次尝试,其中有5次成功,拉普拉斯定律估计你的整体成功概率是6/12或50%,这符合我们的直觉。如果你只试一次便取得成功,拉普拉斯给的估计是2/3,这比假设你每次都赢更合理,也比普莱斯的观点更具可操作性(它告诉我们,50%或更大的成功概率有75%的元概率)。
1700495906
1700495907 拉普拉斯继续将他的统计方法应用到广泛的时间问题上,包括评估男孩和女孩的出生率是否真正平均。(他发现,男婴其实比女婴的出生率稍高。)他还写了关于概率的哲学论文,可以说这是给大众读者的第一本关于概率的书,也是最好的概率书之一,此书奠定了他的理论基础并讲述了这些理论在法律、科学与日常生活上的应用。
1700495908
1700495909 拉普拉斯定律为我们在现实世界中面对小数据时提供了第一种简单的经验法则。即使我们只进行了一些或一次观察,它也都能给予我们实际指导。想知道你的车晚点的概率吗?你的垒球队会赢吗?数一数过去已经发生的数量再加一,然后除以可能的机会数再加2。拉普拉斯定律的精髓就在于无论我们有一个单独的数据点或数以百万计的数据,它都同样适用。小安妮相信太阳明天会升起是有道理的,这句话告诉我们:地球已经连续看到太阳上升约1.6万亿天,在下一次的“尝试”中看见太阳不升起来的机会,几乎没有可能。
1700495910
1700495911
1700495912
1700495913
1700495914 算法之美:指导工作与生活的算法 [:1700494157]
1700495915 算法之美:指导工作与生活的算法 贝叶斯法则与先验信念
1700495916
1700495917 大卫·休谟
1700495918
1700495919 可以想象,所有这些假设都是一致并可以想象的。为什么我们要偏向其中一种,而这一种并不比其余的更一致或可以想象?
1700495920
1700495921 拉普拉斯也考虑了另一种修饰贝叶斯理论的方法,这将被证明是至关重要的:那就是如何处理那些比其他假设可能性更大的假设。例如,买彩票时,99%的中奖率是有可能的,但我们可以假设中奖率更有可能只有1%。这一假设应该体现在我们的估算过程中。
1700495922
1700495923 说得更具体点儿,例如有一个朋友给你看两个不同的硬币。一个是正常的“公平”硬币,正反两面都具有50-50的概率,另一种是两面都是头像的硬币。他把它们扔到一个袋子里,然后随意地拿出一个,他将硬币旋转一次:是头像。你认为你的朋友旋转的是哪个硬币?
1700495924
1700495925 贝叶斯的反向工作方案使这个问题变得简单。那个公平硬币转到头像的概率是50%,另一个双头硬币转到头像的概率是100%。因此,我们可以自信地断言,转到这个硬币的概率是100%除以50%,或朋友掏出双头硬币的概率是它的两倍。
1700495926
1700495927 现在考虑下面一次的旋转。这一次,朋友给你看9个公平硬币和一个双头像硬币,把所有10枚硬币都装进袋子,随机抽取一个,并翻转它:还是头像。现在你怎么想?这次是公平硬币还是双头像硬币?
1700495928
1700495929 拉普拉斯预料到了这一点,而且答案又一次简单得令人印象深刻。如果和以前一样,一枚公平硬币转到头像的概率正好是一枚双头像硬币的一半。但现在,首先公平的硬币被抽到的概率就是双头像硬币的9倍。事实证明,我们可以把这两个不同的概率都考虑进去,并把它们相乘:这就是说,你朋友持有一个公平的硬币的概率是双头像硬币的4.5倍。
1700495930
1700495931 描述这种关系的数学公式,将我们先前持有的观念和我们眼前的证据结合起来,就形成了后来的贝叶斯法则。有点儿讽刺的是,真正重要的工作却是由拉普拉斯完成的。它提供了一个非常简单的解决方案来如何处理现有的信念与观察到的证据:将它们的概率相乘。
1700495932
1700495933 值得注意的是,有一些预先存在的信念,在计算这个公式时至关重要。如果你的朋友只是走近你说:“我从这个袋子里翻出了一枚硬币,最后转出头像那面。你认为这是一枚公平硬币的概率有多大?”除非你最开始就对袋子里是什么硬币有一定了解,否则你完全无法回答这个问题。(当你对任何一个概率都无从得知的时候,你便无法将两个概率相乘),在硬币翻转之前,你对“袋子里”是什么的感觉,或是说在你看到任何数据之前,每个假设的概率都是真实可能的,这就是所谓的先验概率,或者简称为“先验”。贝叶斯法则总是需要一些先验,即使它只是一个猜测。有多少枚双头像硬币?抽到他们的概率有多大?那么,你的朋友有多大可能是一个骗子呢?
1700495934
1700495935 贝叶斯法则依赖于先验概率,这一点在历史上的某些时刻被认为是有争议的、有偏见的,甚至是不科学的。但在现实中,我们的头脑实际上很少会进入一个完全空白甚至停滞的状况。
1700495936
1700495937 当你对先验概率有一定的预估时,贝叶斯法则也适用于各种各样的预测问题,无论它们是大数据类型还是更常见的小数据排序。计算彩票获奖概率或扔硬币的概率仅仅是开始。由贝叶斯和拉普拉斯研究出的方法可以在任何时候帮助我们,尤其是当我们遇到不确定性或数据不足的问题和工作时。这正是我们试图预测未来时所面对的情况。
1700495938
1700495939
1700495940
1700495941
[ 上一页 ]  [ :1.700495892e+09 ]  [ 下一页 ]