打字猴:1.70049864e+09
1700498640
1700498641 案例:PM产品是一款在线的SAAS产品,其用途在于协助卖家实时捕捉买家访问店铺的情况,并且通过该PM产品可以实现跟买家对话、交换联系方式等功能。作为PM产品的运营方,其运营策略是向所有平台的卖家免费提供PM产品的基本功能(每天只能联系一位到访的买家,也即限制了联系多位到访买家的功能)、向部分优质卖家提供一定期限内免费的PM产品全功能(这部分优质卖家免费获赠PM产品,可以享受跟付费一样的全功能)、向目标卖家在线售卖PM产品。
1700498642
1700498643 经过一段时间的运营,现在管理层需要数据分析团队定义一个合理的“PM产品用户活跃度”,使得满足一定活跃度分值的用户能比较容易转化成为PM产品的付费用户,同时这个合适的定义还可以帮助有效监控每天PM产品的运营效果和效率。
1700498644
1700498645 根据上面的案例背景描述,以及之前的活跃度定义的两个基本点来看,在本案例中,该业务场景中最核心的行为因素就是卖家使用该PM产品与到访买家的洽谈动作(表现形式为洽谈的次数)、在线登录该PM产品的登录次数等。而该分析需求的终极目的就是促成付费用户的转化,所以项目最终活跃度的定义是否合适,是否满足业务需求,一个最重要的评估依据就是按照该活跃度定义出来的活跃用户群体里,可以覆盖多少实际的PM产品付费用户。从理论上来说,覆盖率越高越好,如果覆盖率不高,比如,实际付费用户群体里只有50%包含在活跃度定义的活跃群体里,那么这个活跃度的定义是不能满足当初的业务需求的,也就是说这是一个不成功的定义。
1700498646
1700498647 活跃度的定义所涉及的统计技术主要有两个,一个是主成分分析,另一个是数据的标准化。其中,主成分分析的目的,就是把多个核心行为指标转化为一个或少数几个主成分,并最终转化成一个综合的分数,来作为活跃度的定义,到底是取第一个主成分,还是前两个或前三个,这要取决于主成分分析的特征根和累计方差贡献率,一般来说,如果前面几个特征根的累计方差贡献率达到80%以上,就可以基本认为前面几个主成分就可以相应地代表原始数据的大部分信息了;至于数据标准化技术得到了普遍采用,主要是因为不同的指标有不同的度量尺度,只有在标准化之后,才可以将数据按照比例进行缩放,使之落入一个小的区间范围之内,这样,不同变量经过标准化处理后就可以有平等的分析和比较基础了。关于数据标准化的详细介绍,可参看本书8.5.4节和9.3.2节。
1700498648
1700498649
1700498650
1700498651
1700498652 数据挖掘与数据化运营实战:思路、方法、技巧与应用 [:1700497507]
1700498653 数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.4 用户路径分析
1700498654
1700498655 用户路径分析是互联网行业特有的分析专题,主要是分析用户在网页上流转的规律和特点,发现频繁访问的路径模式,这些路径的发现可以有很多业务用途,包括提炼特定用户群体的主流路径、网页设计的优化和改版、用户可能浏览的下一个页面的预测、特定群体的浏览特征等。从这些典型的用途示例中可以看到,数据化运营中的很多业务部门都需要应用用户路径分析,包括运营部门、产品设计部门(PD)、用户体验设计部门(User Experience Design,UED)等。
1700498656
1700498657 路径分析所用的数据主要是Web服务器中的日志数据,不过,互联网的特性使得日志数据的规模通常都是海量的。据预测,到2020年,全球以电子形式存储的数据量将达到35ZB(相当于10亿块1TB的硬盘的容量),是2009年全球存储量的40倍。而在2010年年底,根据IDC的统计,全球的数据量已经达到了120万PB,或1.2ZB。如果将这些数据都刻录在DVD上,那么光把这些DVD盘片堆叠起来就可以从地球往月球一个来回(单程约24万英里)。
1700498658
1700498659 路径分析常用的分析技术有两类,一类是有算法支持的,另一类是严格按照步骤顺序遍历主要路径的。关于路径分析中具体的算法和示例将在第13章做详细的说明。
1700498660
1700498661 在互联网数据化运营的实践中,如果能把单纯的路径分析技术、算法与其他相关的数据分析技术、挖掘技术相融合,那么将会产生更大的应用价值和更为广阔的前景。这种融合的思路包括通过聚类技术划分出不同的群体,然后分析不同群体的路径特征,针对特定人群进行的路径分析,比如,对比付费人群的主要路径与非付费人群的主要路径,优化页面布局等、根据下单付费路径中频繁出现的异常模式可能来对付费环境的页面设计进行优化,提升付费转化率,减少下单后的流失风险等。
1700498662
1700498663 在运营团队看来,路径分析的主要用途之一,即为监控运营活动(或者目标客户)的典型路径,看是否与当初的运营设想一致。如果不一致,就继续深入分析原因,调整运营思路或页面布局,最终目的就是提升用户点击页面的效率;其二就是通过路径分析,提炼新的有价值的频繁路径模式,并且在以后的运营中对这些模式加以应用,提升运营的效率和特定效果。比如,通过某次运营活动的路径分析,我们发现从A入口进来的用户有30%会进入C页面,然后再进入B页面,而A入口是系列运营活动的主要入口之一,基于这个C页面的重要性发现,运营人员在该页面设置了新的提醒动作,取得了较好的深度转化率。
1700498664
1700498665 在产品设计部门(PD)看来,路径分析是实现产品优化的一个重要依据和工具,被路径分析证明是冷僻的功能点和路径的,或许可以被进一步考虑是否有必要取消或优化。对于UED来说,路径分析也是这样帮助他们优化页面设计的。
1700498666
1700498667
1700498668
1700498669
1700498670 数据挖掘与数据化运营实战:思路、方法、技巧与应用 [:1700497508]
1700498671 数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.5 交叉销售模型
1700498672
1700498673 交叉销售这个概念在传统行业里其实已经非常成熟了,也已被普遍应用,其背后的理论依据是一旦客户购买了商品(或者成为付费用户),企业就会想方设法保留和延长这些客户在企业的生命周期和客户的利润贡献,一般会有两个运营选择方向,一是延缓客户流失,让客户尽可能长久地留存,在该场景下,通常就是客户流失预警模型发挥作用,利用流失预警模型,提前锁定最可能流失的有价值的用户,然后客户服务团队采用各种客户关怀措施,尽量挽留客户,从而最终降低客户流失率;二是让客户消费更多的商品和服务,从而更大地提升客户的商业价值,挖掘客户利润,这种尽量挖掘客户利润的说法在以客户为中心的激烈竞争的2.0时代显得有些赤裸裸,所以,更加温和的说法就是通过数据分析挖掘,找出客户进一步的消费需求(潜在需求),从而更好及更主动地引导、满足、迎合客户需求,创造企业和客户的双赢。在这第二类场景中,涉及的主要应用模型就是交叉销售模型。
1700498674
1700498675 交叉销售模型通过对用户历史消费数据的分析挖掘,找出有明显关联性质的商品组合,然后用不同的建模方法,去构建消费者购买这些关联商品组合的可能性模型,再用其中优秀的模型去预测新客户中购买特定商品组合的可能性。这里的商品组合可以是同时购买,也可以有先后顺序,不可一概而论,关键要看具体的业务场景和业务背景。
1700498676
1700498677 不同的交叉销售模型有不同的思路和不同的建模技术,但是前提一般都是通过数据分析找出有明显意义和商业价值的商品组合,可以同时购买,也可以有先后顺序,然后根据找出的这些特性去建模。
1700498678
1700498679 综合数据挖掘的中外企业实践来看,最少有4种完全不同的思路,可以分别在不同的项目背景中圆满完成建立交叉销售模型的这个任务。一是按照关联技术(Association Analysis),也即通常所说的购物篮分析,发现那些有较大可能被一起采购的商品,将它们进行有针对性的促销和捆绑,这就是交叉销售;二是借鉴响应模型的思路,为某几种重要商品分别建立预测模型,对潜在消费者通过这些特定预测模型进行过滤,然后针对最有可能的前5%的消费者进行精确的营销推广;三是仍然借鉴预测响应模型的思路,让重要商品两两组合,找出那些最有可能消费的潜在客户;四是通过决策树清晰的树状规则,发现基于具体数据资源的具体规则(有的多,有的少),国外很多营销方案的制订和执行实际上都是通过这种方式找到灵感和思路的。
1700498680
1700498681 相应的建模技术主要包括关联分析(Association Analysis)、序列分析(Sequence Analysis),即在关联分析的基础上,增加了先后顺序的考虑,以及预测(响应、分类)模型技术,诸如逻辑回归、决策树等。
1700498682
1700498683 上面总结的是基于传统行业的实践,这些经验事实上也成功地应用到了互联网行业的数据化运营中。无论是多种在线产品的交叉销售,还是电子商务中的交叉销售,抑或各种服务的推广、运营中的商品捆绑策略,都可以从中看到交叉销售的影子,这种理念正在深入地影响着数据化运营的效果和进程。
1700498684
1700498685 下面针对典型的交叉销售模型的应用场景来举个例子:A产品与B产品都是公司SAAS系列产品线上的重点产品,经过分析发现两者付费用户的重合度高达40%,现在运营方需要一个数据分析解决方案,可以有效识别出最可能在消费A产品的基础上也消费B产品的潜在优质用户。本案例的分析需求,实际上就是一个典型的交叉销售模型的搭建需求,数据分析师在与业务团队充分沟通后,通过现有数据进行分析,找出了同时消费A产品和B产品(注意,是同时消费,还是有先后次序,这个具体的定义取决于业务需求的判断,两者取数逻辑不同,应用场景也不同,不过分析建模技术还是可以相同的)用户的相关的网站行为、商业行为、客户属性等,之后再进行数据分析和挖掘建模,最后得到了一个有效的预测模型,通过该模型可以对新的用户数据进行预测,找出最可能消费A产品同时也消费B产品的潜在付费用户人群(或名单)。这样,运营方就可以进行精准的目标运营,从而有效提升运营效果,有效提升付费用户数量和付费转化率了。
1700498686
1700498687
1700498688
1700498689
[ 上一页 ]  [ :1.70049864e+09 ]  [ 下一页 ]