1700498750
1700498751
在本案例中,有必要了解一些关键的业务背景和业务因素,比如要想在线交易,卖家的Offer必须是“可在线交易Offer”。这个条件很关键,所谓“可在线交易Offer”是指该商品的Offer支持支付宝等第三方在线支付手段,如果卖家的Offer不支持这些手段,那就无法在线交易,也就无法满足本课题的目标了。所以,这里的“卖家Offer必须是可在线交易Offer”是一个前期的重要门槛和阀值,从此也可以看出,对业务背景的了解非常重要,它决定了课题是否成功。
1700498752
1700498753
下面来谈谈具体的分析思路,先是从最基本的免费注册的卖家(即“全会员”)开始,之后是近30天有登录网站的卖家(说明是“活”的卖家,这里经过了直观的业务思考),再到近1年有新发或重发Offer的卖家,然后是当前有效Offer的卖家,最后是当前有可在线交易Offer的卖家,这个分析过程其实是第一部分的思考,它们构成了金字塔的下半部分,基本上是基于业务背景的了解和顺理成章的逻辑来“进化”的,之所以在“全会员”与“当前有可在线交易Offer”之间安插了另外3层逐步“进化”的指标,主要也是基于业务方需要门槛的进度和细分的考虑,但这不是主要的核心点。
1700498754
1700498755
接下来,从“当前有可在线交易Offer的卖家”开始,层层进化到最高端的“近30天有在线交易的卖家”,也就是找出影响卖家成交的核心因素,并将之提炼成具体的层级和门槛,这一部分则是本案例的重点和核心所在。
1700498756
1700498757
如何找出其中的核心要素以及重要性的先后顺序?在本课题中,使用了预测(分类、响应)模型的方法,即通过搭建预测(响应)模型(目标变量是“近30天是否在线成交”,输入变量由数据分析团队与业务团队共同讨论确定),并通过多种模型算法的比较,最后找出决定交易的几个最重要的输入变量及先后次序。
1700498758
1700498759
最终的分层模型大致如图3-3所示,限于企业商业隐私的考虑,针对该数据做了处理,请勿对号入座。
1700498760
1700498761
1700498762
1700498763
1700498764
图3-3 交易卖家分层示意图
1700498765
1700498766
该金字塔每一层里的数量代表满足该条件的会员(卖家)数量,而且各层之间的条件是连贯且兼容的,比如,从下往上数,第6层“当前有可交易Offer”的用户有204万人,占其前一层“可交易行业卖家”269万人的76%,而且该层的用户必定是同时满足其下5层的所有条件的(包括来自可交易行业,当前有有效Offer,近1年有新发或重发Offer,近30天有登录网站或即时通信工具等)。
1700498767
1700498768
细心的读者可能会发现,最顶层的人数是31万,占近30天有交易卖家总数的71%,为什么不能占近30天有交易卖家总数的100%?这个差距正是由金字塔模型的本质所决定的,无论这个层层进化的金字塔模型多么完美,它还是无法完全圈定有交易卖家的总数,总是有一部分有交易的卖家不是满足上述金字塔上半部分的那些条件、门槛、阀值。这也是类似的分层模型只能看大数、看主流的主要原因和特点,但是只要这个模型可以圈定大多数的人群(比如本项目实现的71%,或者更高),那它就有相当的代表性,就可以作为相应的决策参考和业务参考。
1700498769
1700498770
当然,这个模型是否可以投入应用,还需要进一步检验,常规的检验方法就是通过不同时间段的数据,看是否有相似的规律、门槛、占比、漏斗,也就是看这个金字塔的结构是否具有一定时间长度的稳定性。在本项目中,我们通过前后各半年的数据分别进行了验证,发现这个金字塔的结果总体还是比较稳定的,确实可以作为决策参考和业务借鉴。
1700498771
1700498772
案例二:客户服务的分层模型
1700498773
1700498774
背景:A产品是一个在线使用的付费产品,其主要功能就是让卖家实时获悉来自己网店的买家,可以让卖家通过主动对话促成双方的交谈,一旦对上话,卖家就可以得到由系统提供的买家联系方式等。很明显,该产品的核心功能(卖点)就是让卖家第一时间抓住来店铺的买家,并通过对话拿到买家的联系方式,方便后期的跟进,直至达成交易。现在该产品的客户服务团队正在负责付费用户的后期续费工作,该客服团队希望数据分析师帮他们制作一个付费用户的分层模型,在业务方的设想中该模型至少有3层,每一层可以对应相应的客服方案来帮助该层客户解决问题,模型的最终目的是促进付费客户的续费率稳步提升。具体来说,业务方希望根据业务敏感和客服资源储备,对付费用户进行3个群体的划分,每个群体有明确的业务诊断和客服方案(第一个群体,“体质差的客户群体”,比如访客数比较少,并且客户登录在线平台的次数也比较少(导致双方握手交谈可能性不高),这群客户被认为是最次要关注的;第二个群体,“问题客户群体”,比如对该产品的功能点使用都很少的客户,针对这群客户,客服团队可以对他们提供有针对性的产品功能教育;第三个群体,“生死线客户”,这群客户特点是有相对而言数量较多的访客,但是他们很少主动洽谈(以至无法拿到买家的联系方式,影响后期的成交),之所以称之为“生死线客户”,是因为客服团队希望作为重点关怀的群体,把他们从产品使用的“无效性”上拉回来,把他们从可能流失(续费)的生死线上拉回来(这群客户有理由从产品中获益(拿到买家联系方式),只是他们没有主动联系客户,如果他们能主动与买家洽谈,从而拿到联系方式,他们的成交业务有理由明显上升)。
1700498775
1700498776
该案例的分层模型用不上复杂的建模技术,只需要基于简单的统计技能就可实现。在深度把握产品价值和业务背景的前提下,我们与业务方一起基于他们设想的3个细分群体,根据实际数据找出了相应的具体阀值。具体来说,针对“体质差的客户群体”,基于访客数量和自身登录平台的天数和次数,进行两维数据透视,就可以找到满意的阀值和门槛定义;针对“问题客户群体”,只需要针对各功能点使用情况的10分位,找出最低的20%~30%用户就可以了;针对“生死线客户群体”,同样是基于访客数量和自身主动洽谈的次数,进行两维数据透视,也可以找到满意的阀值和门槛定义,这样就能根据数据分布情况找到有很多访客,同时主动洽谈次数很少的客户群体。上述群体划分的方法主要是基于业务理解和客服团队的资源配备的,事后的方案验证也表明,该种群体划分不仅能让业务方更容易产生理解和共鸣,也能很好地稳定并提升付费用户的续费率。
1700498777
1700498778
1700498779
1700498780
1700498782
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.9 卖家(买家)交易模型
1700498783
1700498784
卖家(买家)交易模型的主要目的是为买卖双方服务,帮助卖家获得更多的买家反馈,促进卖家完成更多的交易、获得持续的商业利益,其中涉及主要的分析类型包括:自动匹配(预测)买家感兴趣的商品(即商品推荐模型)、交易漏斗分析(找出交易环节的流失漏斗,帮助提升交易效率)、买家细分(帮助提供个性化的商品和服务)、优化交易路径设计(提升买家消费体验)等。交易模型的很多分析类型其实已经在其他项目类型里出现过了,之所以把它们另外归入卖家(买家)交易模型的类型,主要是希望和读者一起换个角度(从促进交易的角度)来看待问题和项目。“横看成岭侧成峰”,同样的模型课题,其实有不同的主题应用场景和不一样的出发点,灵活、自如是一个合格的数据分析师应该具备的专业素养。
1700498785
1700498786
1700498787
1700498788
1700498790
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.10 信用风险模型
1700498791
1700498792
这里的信用风险包括欺诈预警、纠纷预警、高危用户判断等。在互联网高度发达,互联网技术日新月异的今天,基于网络的信用风险管理显得尤其基础,尤其重要。
1700498793
1700498794
虽然目前信用风险已经作为一个独立的专题被越来越多的互联网企业所重视,并且有专门的数据分析团队和风控团队负责信用风险的分析和监控管理,但是从数据分析挖掘的角度来说,信用风险分析和模型的搭建跟常规的数据分析挖掘没有本质的区别,所采用的算法都是一样的,思路也是类似的。如果一定要找出这两者之间的区别,那就得从业务背景考虑了,从风险的业务背景来看,信用风险分析与模型相比于常规的数据分析挖掘有以下一些特点:
1700498795
1700498796
❑分析结论或者欺诈识别模型的时效更短,需要优化(更新)的频率更高。网络上骗子的行骗手法经常会变化,导致分析预警行骗欺诈的模型也要因此持续更新。
1700498797
1700498798
❑行骗手段的变化很大程度上是随机性的,所以这对欺诈预警模型的及时性和准确性提出了严重的挑战。
1700498799
[
上一页 ]
[ :1.70049875e+09 ]
[
下一页 ]