1700498771
1700498772
案例二:客户服务的分层模型
1700498773
1700498774
背景:A产品是一个在线使用的付费产品,其主要功能就是让卖家实时获悉来自己网店的买家,可以让卖家通过主动对话促成双方的交谈,一旦对上话,卖家就可以得到由系统提供的买家联系方式等。很明显,该产品的核心功能(卖点)就是让卖家第一时间抓住来店铺的买家,并通过对话拿到买家的联系方式,方便后期的跟进,直至达成交易。现在该产品的客户服务团队正在负责付费用户的后期续费工作,该客服团队希望数据分析师帮他们制作一个付费用户的分层模型,在业务方的设想中该模型至少有3层,每一层可以对应相应的客服方案来帮助该层客户解决问题,模型的最终目的是促进付费客户的续费率稳步提升。具体来说,业务方希望根据业务敏感和客服资源储备,对付费用户进行3个群体的划分,每个群体有明确的业务诊断和客服方案(第一个群体,“体质差的客户群体”,比如访客数比较少,并且客户登录在线平台的次数也比较少(导致双方握手交谈可能性不高),这群客户被认为是最次要关注的;第二个群体,“问题客户群体”,比如对该产品的功能点使用都很少的客户,针对这群客户,客服团队可以对他们提供有针对性的产品功能教育;第三个群体,“生死线客户”,这群客户特点是有相对而言数量较多的访客,但是他们很少主动洽谈(以至无法拿到买家的联系方式,影响后期的成交),之所以称之为“生死线客户”,是因为客服团队希望作为重点关怀的群体,把他们从产品使用的“无效性”上拉回来,把他们从可能流失(续费)的生死线上拉回来(这群客户有理由从产品中获益(拿到买家联系方式),只是他们没有主动联系客户,如果他们能主动与买家洽谈,从而拿到联系方式,他们的成交业务有理由明显上升)。
1700498775
1700498776
该案例的分层模型用不上复杂的建模技术,只需要基于简单的统计技能就可实现。在深度把握产品价值和业务背景的前提下,我们与业务方一起基于他们设想的3个细分群体,根据实际数据找出了相应的具体阀值。具体来说,针对“体质差的客户群体”,基于访客数量和自身登录平台的天数和次数,进行两维数据透视,就可以找到满意的阀值和门槛定义;针对“问题客户群体”,只需要针对各功能点使用情况的10分位,找出最低的20%~30%用户就可以了;针对“生死线客户群体”,同样是基于访客数量和自身主动洽谈的次数,进行两维数据透视,也可以找到满意的阀值和门槛定义,这样就能根据数据分布情况找到有很多访客,同时主动洽谈次数很少的客户群体。上述群体划分的方法主要是基于业务理解和客服团队的资源配备的,事后的方案验证也表明,该种群体划分不仅能让业务方更容易产生理解和共鸣,也能很好地稳定并提升付费用户的续费率。
1700498777
1700498778
1700498779
1700498780
1700498782
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.9 卖家(买家)交易模型
1700498783
1700498784
卖家(买家)交易模型的主要目的是为买卖双方服务,帮助卖家获得更多的买家反馈,促进卖家完成更多的交易、获得持续的商业利益,其中涉及主要的分析类型包括:自动匹配(预测)买家感兴趣的商品(即商品推荐模型)、交易漏斗分析(找出交易环节的流失漏斗,帮助提升交易效率)、买家细分(帮助提供个性化的商品和服务)、优化交易路径设计(提升买家消费体验)等。交易模型的很多分析类型其实已经在其他项目类型里出现过了,之所以把它们另外归入卖家(买家)交易模型的类型,主要是希望和读者一起换个角度(从促进交易的角度)来看待问题和项目。“横看成岭侧成峰”,同样的模型课题,其实有不同的主题应用场景和不一样的出发点,灵活、自如是一个合格的数据分析师应该具备的专业素养。
1700498785
1700498786
1700498787
1700498788
1700498790
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.10 信用风险模型
1700498791
1700498792
这里的信用风险包括欺诈预警、纠纷预警、高危用户判断等。在互联网高度发达,互联网技术日新月异的今天,基于网络的信用风险管理显得尤其基础,尤其重要。
1700498793
1700498794
虽然目前信用风险已经作为一个独立的专题被越来越多的互联网企业所重视,并且有专门的数据分析团队和风控团队负责信用风险的分析和监控管理,但是从数据分析挖掘的角度来说,信用风险分析和模型的搭建跟常规的数据分析挖掘没有本质的区别,所采用的算法都是一样的,思路也是类似的。如果一定要找出这两者之间的区别,那就得从业务背景考虑了,从风险的业务背景来看,信用风险分析与模型相比于常规的数据分析挖掘有以下一些特点:
1700498795
1700498796
❑分析结论或者欺诈识别模型的时效更短,需要优化(更新)的频率更高。网络上骗子的行骗手法经常会变化,导致分析预警行骗欺诈的模型也要因此持续更新。
1700498797
1700498798
❑行骗手段的变化很大程度上是随机性的,所以这对欺诈预警模型的及时性和准确性提出了严重的挑战。
1700498799
1700498800
❑对根据预测模型提炼出的核心因子进行简单的规则梳理和罗列,这样就可在风控管理的初期阶段有效锁定潜在的目标群体。
1700498801
1700498802
1700498803
1700498804
1700498806
数据挖掘与数据化运营实战:思路、方法、技巧与应用 3.11 商品推荐模型
1700498807
1700498808
鉴于商品推荐模型在互联网和电子商务领域已经成为一个独立的分析应用领域,并且正在飞速发展并且得到了广泛应用。因此除本节以外,其他章节将不再对商品推荐模型做任何分析和探讨,至于本节,相对于其他的分析类型来说,会花费更多的笔墨和篇幅。希望能给读者提供足够的原理和案例[1]。
1700498809
1700498811
3.11.1 商品推荐介绍
1700498812
1700498813
电子商务推荐系统主要通过统计和数据挖掘技术,并根据用户在电子商务网站的行为,主动为用户提供推荐服务,从而来提高网站体验的。根据不同的商业需求,电子商务推荐系统需要满足不同的推荐粒度,主要以商品推荐为主,但是还有一些其他粒度推荐。譬如Query推荐、商品类目推荐、商品标签推荐、店铺推荐等。目前,常用的商品推荐模型主要分为规则模型、协同过滤和基于内容的推荐模型。不同的推荐模型有不同的推荐算法,譬如对于规则模型,常用的算法有Apriori等;而协同过滤中则涉及K最近邻居算法、因子模型等。没有放之四海而皆准的算法,在不同的电子商务产品中,在不同的电子商务业务场景中,需要的算法也是不一样的。实际上,由于每种算法各有优缺点,因此往往需要混合多种算法,取长补短,从而提高算法的精准性。
1700498814
1700498815
[1]本节内容由淘宝网的商品推荐高级算法工程师陈凡负责编写,陈凡的微博地址为hppt://weibo.com/bicloud。
1700498816
1700498817
1700498818
1700498819
[
上一页 ]
[ :1.700498771e+09 ]
[
下一页 ]