打字猴:1.700498e+09
1700498000
1700498001
1700498002 数据挖掘与数据化运营实战:思路、方法、技巧与应用 [:1700497479]
1700498003 数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.1.2 从4C到3P3C
1700498004
1700498005 4C理论虽然成功找到了从“以产品为中心”转化为“以消费者为中心”的思路和要素,但是随着社会的进步,科技的发展,大数据时代的来临,4C理论再次落后于时代发展的需要。大数据时代,日益白热化的市场竞争、越来越严苛的营销预算、海量的数据堆积和存储等,迫使现代企业不得不寻找更合适、更可控、更可量化、更可预测的营销思路和方法论。于是在基本思路上融合了4P理论和4C理论的nPnC形式的理论出现了。
1700498006
1700498007 具体到典型的互联网行业,虽然学术界对于到底是几个P和几个C仍存在着争议,没有定论,但是这并不妨碍企业积极探索并付诸实践应用,本书姑且以3P3C为例,如图1-3所示,概述互联网行业运营的典型理论探索。
1700498008
1700498009
1700498010
1700498011
1700498012 图1-3 3P3C理论结构图
1700498013
1700498014 在3P3C理论中,数据化运营6要素的内容如下。
1700498015
1700498016 ❑Probability(概率):营销、运营活动以概率为核心,追求精细化和精准率。
1700498017
1700498018 ❑Product(产品):注重产品功能,强调产品卖点。
1700498019
1700498020 ❑Prospects(消费者,目标用户)。
1700498021
1700498022 ❑Creative(创意,包括文案、活动等)。
1700498023
1700498024 ❑Channel(渠道)。
1700498025
1700498026 ❑Cost/Price(成本/价格)。
1700498027
1700498028 而在这其中,以数据分析挖掘所支撑的目标响应概率(Probability)是核心,在此基础上将会围绕产品功能优化、目标用户细分、活动(文案)创意、渠道优化、成本的调整等重要环节和要素,共同促使数据化运营持续完善,直至成功。
1700498029
1700498030 需要指出的是,这里的目标响应概率(Probability)不应狭义理解为仅仅是预测响应模型之类的响应概率,它有更宽泛的含义,既可以从宏观上来理解,又可以从微观上来诠释。从宏观上来理解,概率可以是特定消费群体整体上的概率或可能性。比如,我们常见的通过卡方检验发现某个特定类别群体在某个消费行为指标上具有的显著性特征,这种显著性特征可以帮助我们进行目标市场的选择、寻找具有相似特征的潜在目标用户,制定相应的细分营销措施和运营方案等,这种方法可以有效提升运营的效率和效果;从微观上来理解,概率可以是具体到某个特定消费者的“预期响应概率”,比如我们常见的通过逻辑回归算法搭建一个预测响应模型,得到每个用户的预计响应概率,然后,根据运营计划和预算,抽取响应概率分数的消费者,进行有针对性的运营活动等,这种方法也可以有效提升运营的效率和效果。
1700498031
1700498032 宏观的概率更加有效,还是微观的概率更加有效,这需要结合项目的资源计划、业务背景、项目目的等多种因素来权衡,不可一概而论。虽然微观的概率常常更为精细、更加准确,但是在实践应用中,宏观的群体性概率也可以有效提升运营效果,也是属于数据化运营的思路。所以在实践过程中如何选择,要根据具体的业务场景和具体的数据分析解决方案来决定。更多延伸性的分析探讨,将在后面章节的具体项目类型分析、技术分享中详细介绍。
1700498033
1700498034 上述3P3C理论有效锁定了影响运营效果的主要因素、来源,可以帮助运营人员、管理人员、数据分析人员快速区分实践中的思考维度和着力点,提高思考效率和分析效率。
1700498035
1700498036
1700498037
1700498038
1700498039 数据挖掘与数据化运营实战:思路、方法、技巧与应用 [:1700497480]
1700498040 数据挖掘与数据化运营实战:思路、方法、技巧与应用 1.2 数据化运营的主要内容
1700498041
1700498042 虽然目前企业界和学术界对于“数据化运营”的定义没有达成共识,但这并不妨碍“数据化运营”思想和实践在当今企业界尤其是互联网行业如火如荼地展开。阿里巴巴集团早在2010年就已经在全集团范围内正式提出了“数据化运营”的战略方针并逐步实施数据化运营,腾讯公司也在“2012年腾讯智慧上海主题日”高调宣布“大数据化运营的黄金时期已经到来,如何整合这些数据成为未来的关键任务”。
1700498043
1700498044 综合业界尤其是互联网行业的数据化运营实践来看,尽管各行业对“数据化运营”的定义有所区别,但其基本要素和核心是一致的,那就是“以企业级海量数据的存储和分析挖掘应用为核心支持的,企业全员参与的,以精准、细分和精细化为特点的企业运营制度和战略”。换种思路,可以将其浅层次地理解为,在企业常规运营的基础上革命性地增添数据分析和数据挖掘的精准支持。这是从宏观意义上对数据化运营的理解,其中会涉及企业各部门,以及数据在企业中所有部门的应用。但是必须指出,本书所要分享的实战项目涉及的数据化运营,主要落实在微观意义的数据化运营上,即主要针对运营、销售、客服等部门的互联网运营的数据分析、挖掘和支持上。
1700498045
1700498046 注意:这种宏观和微观上的区别在本质上对于数据化运营的核心没有影响,只是在本书的技术和案例分享中更多聚焦于运营部门、销售部门、客服部门而已,特此说明。
1700498047
1700498048 针对互联网运营部门的数据化运营,具体包括“网站流量监控分析、目标用户行为研究、网站日常更新内容编辑、网络营销策划推广”等,并且,这些内容是在以企业级海量数据的存储、分析、挖掘和应用为核心技术支持的基础上,通过可量化、可细分、可预测等一系列精细化的方式来进行的。
1700498049
[ 上一页 ]  [ :1.700498e+09 ]  [ 下一页 ]