1700506361
1700506362
1700506363
图8-9 硬币投掷次数和统计概率
1700506364
1700506365
这种方式被认为更科学的原因是:它不是单纯地依赖一种“一厢情愿”的排列组合数量的推导,而是通过真实的实验得到数据,从获取方式上更接近科学的定义。要不怎么说“统计是最自然的认知方式”呢?
1700506366
1700506367
对于非匀质的硬币就不能使用这种方式进行模拟了,正确的方法是通过实际的观测来记录真实的实验结果。
1700506368
1700506369
主观概率往往是凭经验进行判断。这种方式的准确性,由于不是经过具体的实验得出的结论,所以不太容易作出科学的评价。虽然经验看上去也是一种“实验”,但是由于其准确性值得怀疑,所以在说服力方面也打了很大的折扣,在这里就不讨论了。
1700506370
1700506371
除此之外,概率还定义了加法法则,这样就使互斥事件的概率加和可以通过分别计算互斥事件发生的概率再做加和运算来得到。别看统计学是一种“高冷”的计算科学,但是它的应用性非常强,几乎在人类活动的各个领域都能起到认知和指导的作用。让我们往下看。
1700506372
1700506374
8.8.1 数学期望
1700506375
1700506376
在统计学中有一个非常重要的基础概念,叫作数学期望(Mean)。数学期望是指在试验中每次可能结果的概率乘以其结果的总和的平均值。
1700506377
1700506378
设在一次试验中,每一次的观测结果数量是一个随机变量xi,某一个xi对应出现的概率为p(xi),则其数学期望值为:
1700506379
1700506380
1700506381
1700506382
1700506383
不难看出,这是一种加权平均的概念,也就是每次观测到的随机变量值加和再除以观测次数所得到的熵值。这是随机变量为离散值的情况。如果随机变量是连续值,可以写成积分的形式。设连续随机变量X概率密度为f(x),则数学期望值为:
1700506384
1700506385
1700506386
1700506387
1700506388
这两种方式只是形式不同,其本质内容是一样的,都是加权平均的概念,即一次试验中观测到的随机变量平均值的概念,也是在描述一个随机过程观测值的时候最容易被人接受的描述方式。数学期望对描述一个大量或长期反复过程中的单次平均效果是有帮助的,也是很多基于统计的改进方案中一个重要的比对指标。
1700506389
1700506391
8.8.2 正态分布
1700506392
1700506393
正态分布应该是自然界中存在最为普遍的分布形态。我们在天文学、地理学、生物学、经济学、社会学等各个自然基础学科及社会学科的研究中经常能够观察到,很多统计样本的分布都呈现正态分布的特点。
1700506394
1700506395
正态分布的公式相信学过高等数学的读者都不会陌生:
1700506396
1700506397
1700506398
1700506399
1700506400
正态分布也叫作高斯分布,是以德国著名数学家高斯的名字命名的,借此表彰他对这一数学理论的贡献(如图8-10所示)。
1700506401
1700506402
1700506403
1700506404
1700506405
图8-10 正态分布概率密度函数图
1700506406
1700506407
在统计学中,正态分布的相关应用是非常广的,我们观察到的很多事物都呈现正态分布。例如,在一定范围内随机抽取一定数量的人量取他们的身高,他们的身高就会呈现出正态分布的特点,画出的概率密度函数曲线是一个以身高平均值μ为中心,以σ为方差的钟形曲线。再如,在工厂制作的大量同等规格的零件中,抽取一定数量的零件精确量取其大小(例如长度或者直径等尺寸指标),通常也是一个以μ为平均值,以σ为方差的正态分布。在自然界中这样的例子还有很多,根本不用人为去做任何干涉,在统计上大量统计序列就会呈现出正态分布的样态。正是因为有了这样一种特性,在进行统计测量的过程中,为了减小误差,我们也会采用多次测量取平均值的方法来尽可能减小单次观测中引入的噪声。例如,评价当前社会个人财富水平,无论这个社会体现出多么不平均的状态,也仍旧希望通过随机抽取一些人作为样本,然后取收入(财富)的平均值来进行衡量。在物理学上,如果希望相对精确地量取一个物体的长度,也要通过精确的量具进行多次测量再求平均值,并认为这个平均值是距离“真实值”最近的值。这一系列的理论依据仍旧是正态分布的理论依据,人们希望通过这种方式得到尽可能精确的μ值。可是,为什么它们会不约而同地呈现正态分布的特点呢?我们还是从刚刚这种统计和观察的过程说起。
1700506408
1700506409
因为万事万物都在不停地变化,所我们在观察任何一个对象的时候,都没有办法观察到一个“静态的”或“不变的”值。我们千万不能理解为:看到这个东西是“静止”的,它就一定是“静止”的。我们不能让这种错误的观念在拥有科学思维的头脑中蔓延。大到恒星、行星等天体,小到原子、电子等粒子,它们每时每刻都在运动。它们每时每刻都有自己运动的方向和速度,每时每刻都有自己具体的空间位置。问题是,人类的观测能力对它们来说永远都是有限的,在我们进行观测的一瞬间,多么希望有一个极其完美的“快照”状态把它们都记录下来——其实根本做不到。
1700506410
[
上一页 ]
[ :1.700506361e+09 ]
[
下一页 ]