1700526402
图灵1947年在一篇论文中解释了为什么我们在生活中察觉不到机器的智能:“要判断一样事物在多大程度上以智能方式运转,不仅受判断者主观心智与阅历的影响,也会受判断对象的客观属性左右。如果我们能对该事物的行为做出解释和预测,也就不会一心想着从智能角度考量它了。所以即使面对同一个事物,可能有的人会觉得它是智能的,而另一些人却不这样认为,因为后者已经摸清了它的行为规律。”
1700526403
1700526404
我想起了伊莱恩·里奇对人工智能的定义:关于如何让电脑完成当下人类更擅长的事情的研究。
1700526405
1700526406
作为人工智能的研究人员,我们注定永远也够不到那根悬挂在我们前方的胡萝卜,因此,人工智能也可以被定义成一门追逐电脑科技未解难题的学问。
1700526407
1700526408
1700526409
1700526410
1700526411
“你的第二步应阐述得更详细些。”
1700526412
1700526413
智能公式
1700526414
1700526415
如果电脑编程员是几个领域的创造者,那他本人也是这几个领域的立法者……没有哪位编剧或导演的掌控力如此之强,能一手调度舞台,让演员们服从编排,各司其职;也没有任何一位国王能如此大权在握,运筹帷幄,调兵遣将。
1700526416
1700526417
——约瑟夫·魏岑鲍姆
1700526418
1700526419
一只海狸和一只森林动物在谈论一座巨大的人造水坝。海狸说道:“虽然这座水坝不是我亲自建造的,但其建造理念由我的思想发展而来。”
1700526420
1700526421
——爱德华·弗莱德金
1700526422
1700526423
简单的事应从简为之,复杂的事应尽力为之。
1700526424
1700526425
——艾伦·凯
1700526426
1700526427
智能是什么?
1700526428
1700526429
目标是什么?或避开天敌、寻觅食物、找寻栖身之地,此是为生存;或分享经验、抒发情感,此是为交流;或下棋、解谜、打球,此是为娱乐;或作画或写文,此是为追求卓越。“目标”可以像数学问题的答案一样明确唯一,也可以是没有明显正确答案的个性化表达。
1700526430
1700526431
我认为“智能”就是对有限的资源(包括时间)进行最优化利用以达成各种目标。这个概念还有许多其他定义,在这些林林总总的定义中,我最赞同的还是R·W·扬的说法,他认为“智能就是在混乱中发现秩序的能力”。15下面讨论的各种范式便恰如其分地体现了这一定义。
1700526432
1700526433
智能可以迅速制订出令人满意(有时是出人意料)的计划,可以满足诸多限制条件。各类智能产品也各具特色,有的聪颖机智、洞察力强,有的外形优雅、设计巧妙。有些智能方案更是集所有特色于一身,最典型的例子就是图灵用来破解德军英格玛密码的机器。偶尔的小聪明有时可以解决大问题,而要切实可靠地解决问题,仅靠小聪明是行不通的,需要一个真正智能的过程。显然,目前还没有任何一个简单的公式能概括阐述宇宙中最强大现象的奥秘,即复杂无比、神秘莫测的智能进程。
1700526434
1700526435
事实并非如此。要解决数量如此惊人的智能问题,只需要一个方法足矣,即简易数理方法配合大量计算(计算过程本身并不复杂,1936年图灵发明的“图灵机器”就是典型例子16)和充足的问题样例。有时甚至不需要问题样例,只要给出问题的明确描述便可。
1700526436
1700526437
利用这些简单的范式,我们能走多远呢?有些智能问题或可通过简单方法解决,但是否存在简单方法无法解决的更高级问题呢?事实证明,简单方法可解决的问题覆盖面极其广泛。最终,只要将充足大量的计算(到21世纪数量会更庞大)与正确恰当的公式准确结合起来,几乎没有解决不了的难题,唯有这个问题也许是个例外:构成智能的统一公式是什么样的?
1700526438
1700526439
进化花了几十亿年才给出了这个问题的答案,我们在短短几千年中为寻找正确答案开了个好头,可能再过几十年,我们就能解答这一问题。
1700526440
1700526441
下文中简要说明的几种方法会在附录二“如何打造一台智能机器”中做详细讨论。
1700526442
1700526443
下面我们将看到一些看似普通却作用强大的模式。付诸实践后,相信你也能制造智能机器。
1700526444
1700526445
递归公式:问题说明要仔细
1700526446
1700526447
所谓递归过程就是调用启动自身程序的过程。递归是一种有用的方法,可以生成一个问题所有可能的解决方法。拿下棋来说,递归可以列出每步棋后所有可能的走法。
1700526448
1700526449
以棋类比赛为例。我们设计了一个运算棋局走法的程序,名叫“挑选最优行动方案”。开始运行后,程序会根据当前棋局列出所有可能的走法。设计这一部分时,为了总结出所有可能的走法,我们需要考虑棋局的规则,对问题进行明确说明。针对每一步走法,该程序又会模拟假设出走这一步以后的棋局。我们又要根据假设的棋局考虑对手会如何应对。这时递归法开始发挥作用,因为“挑选最优行动方案”同样也会为对手选出最佳走法。此程序通过解答自身上一步提出的问题,又为对手罗列出所有可能的走法。
1700526450
1700526451
“挑选最优行动方案”不断调用自身程序,尽可能多地预测出可能的走法,步步累加,形成一棵巨大的博弈树。这是典型的指数级增长案例,因为每增加半步,电脑的计算量就会变为原来的5倍。
[
上一页 ]
[ :1.700526402e+09 ]
[
下一页 ]