1700532373
■ 人工智能的三次浪潮
1700532374
1700532375
我来简单定义和解释一下本书用到的概念。
1700532376
1700532377
人工智能泛指让机器具有人的智力的技术。这项技术的目的是使机器像人一样感知、思考、做事、解决问题 。人工智能是一个宽泛的技术领域,包括自然语言理解、计算机视觉、机器人、逻辑和规划等,它可以被看作计算机专业的子领域,除了和计算机相关,它还和心理学、认知科学、社会学等有不少交叉。
1700532378
1700532379
机器学习指计算机通过观察环境,与环境交互,在吸取信息中学习、自我更新和进步。 大家都了解计算机程序是怎么回事,一个程序是计算机可以执行的一系列的指令,比如打印一张图。那么机器学习跟我们熟知的程序的本质区别是什么呢?你可以想象,某个程序是机器写的,而不是一个程序员写的。那么机器怎么知道如何写这个程序呢?这个机器就是从大量的数据当中学到的。
1700532380
1700532381
简单地说,大多数机器学习算法可以分成训练(training)和测试(testing)两个步骤,这两个步骤可以重叠进行。训练,一般需要训练数据,就是告诉机器前人的经验,比如什么是猫、什么是狗、看到什么该停车。训练学习的结果,可以认为是机器写的程序或者存储的数据,叫模型(model)。总体上来说,训练包括有监督(supervised learning)和无监督(unsupervised learning)两类。有监督好比有老师告诉你正确答案;无监督仅靠观察自学,机器自己在数据里找模式和特征。深度学习(deep learning)是机器学习的一种方法,它基于神经元网络,适用于音频、视频、语言理解等多个方面。
1700532382
1700532383
我们先来短暂地回顾一下人工智能的三次浪潮。它们有什么特点?又有什么不同?它们又是怎样互相联系,如何在前一次的基础之上建立的?
1700532384
1700532385
第一次人工智能浪潮大约在20世纪50年代。1956年,在达特茅斯的人工智能研讨会上,约翰·麦卡锡正式提出“人工智能”这个概念,被公认是现代人工智能学科的起始。麦卡锡与麻省理工学院的马文·明斯基(Marvin Minsky)被誉为“人工智能之父”。
1700532386
1700532387
在计算机被发明的早期,许多计算机科学家们就认真地思考和讨论这个人类发明出来的机器,和人类有什么根本区别。图灵机和图灵测试,就是这个思考的一个最典型结果。最初的那批思考人工智能的专家,从思想和理论上走得非常前沿,内行的专家很早就看到了计算机的潜力。我们现在所问的这些问题,他们其实都问过了。比如,什么叫“推理”(reasoning), 机器如何推理;什么叫“懂得”(understanding),机器如何懂得;什么叫知识(knowledge),机器如何获取和表达知识;什么时候,我们无法分辨出机器和人。这个阶段产生了许多基础理论,不仅是人工智能的基础理论,也是计算机专业的基石。
1700532388
1700532389
从技术上来说,第一次人工智能的大发展,主要是基于逻辑的。1958年麦卡锡提出了逻辑语言 LISP。从20世纪50年代到20世纪80年代,研究者们证明了计算机可以玩游戏,可以进行一定程度上的自然语言理解。 在实验室里,机器人可以进行逻辑判断、搭积木;机器老鼠可以针对不同的路径和障碍做出决定;小车可以在有限的环境下自己驾驶。研究者们发明了神经网络,可以做简单的语言理解和物体识别。
1700532390
1700532391
然而,在人工智能的前二三十年里,它虽然是一个硕果累累的科研领域,人们实际生活中的用处却几乎没有。20世纪80年代初,人工智能因为缺乏应用而进入“冬季”。到80年代末和90年代初,在我刚入大学的那段时间里,人工智能科学家们决定另辟蹊径,从解决大的普适智能问题,转向解决某些领域的单一问题。“专家系统”这个概念被提了出来,它让这些研究成果找到了第一个可能的商业出路。
1700532392
1700532393
计算机技术经过了30年左右的发展,数据存储和应用有了一定的基础。研究者们看到人工智能和数据结合的可能性,而结合得最好的应用就是“专家系统”。如果我们能把某一个行业的数据,比如说关于心脏病的所有数据,都告诉一个机器,再给它一些逻辑,那这个机器岂不是就成了“心脏病专家”,如果我们要看病,是否就可以问它?
1700532394
1700532395
看病、预报天气等各行各业的专家系统,听起来非常有希望、有意义,也确实有实际的应用场景,所以当时学术界对人工智能又掀起了一阵热潮。然而,比较有意思的是,当我们想要用这些专家系统来做一些聪明的诊断的时候,我们发现遇到的问题并不是如何诊断,而是大部分的数据在当时还不是数字化的。病人的诊断历史还停留在看不懂的医生手写处方上。有些信息就算是已经开始数字化,也都是在一些表格里面,或者是在一些不互相连接的机器里面,拿不到,用不了。
1700532396
1700532397
于是,我们这一批想去做自动诊断的人,反而去做了一些基础的工作。这个基础的工作用一句话说,就是把世界上所有的信息数字化。
1700532398
1700532399
在一批人致力于把世界上每一本书、每一张图、每一个处方都变成电子版的时候,互联网的广泛应用,又把这些信息相互联接了起来,成了真正的大数据。同时,摩尔定律(Moore’s law)预测的计算性能增加一直在起作用。随着计算能力的指数增长,那些只能在实验室里或有限场景下实现的应用,离现实生活越来越近了。1997年,“深蓝”打败当时的世界象棋冠军Garry Kasparov,和2017年AlphaGo围棋打败李世石一样,被公认是一个里程碑 。其实,随着计算能力的提高,在这些单一的、有确定目标的事情上机器打败人,都只是个时间问题。
1700532400
1700532401
第三次的人工智能浪潮就是基于另外两个技术领域的大发展,一个是巨大的计算能力,一个是海量的数据。巨大的计算能力来自于硬件、分布式系统、云计算技术的发展。最近,专门为神经网络制作的硬件系统(neural-network-based computing)又一次推动了人工智能软硬件结合的大进步。海量的数据来源于前几十年的数据积累和互联网技术的发展。比如,2001年上市的GPS系统,带来前所未有的大量出行数据;智能手机带来了前所未有的人们生活习性的数据,等等。计算能力和数据的结合,促进、催化了机器学习算法的飞跃成长。
1700532402
1700532403
这次的人工智能浪潮起始于近10年。技术的飞跃发展,带来了应用前所未有的可能性。最近这次人工智能浪潮和前两次最基本的不同是它的普遍应用和对普通人生活的影响。也就是说,人工智能离开了学术实验室,真正走进大众的视野。
1700532404
1700532405
■ 人工智能全面逼近人类能力?
1700532406
1700532407
为什么这次人工智能浪潮如此凶猛?人工智能真的全面逼近了人类的能力吗?人工智能技术现在发展到什么阶段?我们先来看3个简单的事实。
1700532408
1700532409
首先,历史上第一次,计算机在很多复杂任务的执行上超过人类或者即将超过人类,比如图像识别、视频理解、机器翻译、汽车驾驶、下围棋,等等。这些都是人们容易理解的,一直由人类完成的任务。所以,人工智能取代人类的话题开始出现在各种头条。
1700532410
1700532411
其实,在单一技术方面,许多计算相关的技术早已超过人类的能力,而且被广泛应用,比如导航、搜索、搜图、股票交易。不少人已经习惯于用语音给简单指令操作。但是,这些相对单纯的技术主要是“完成一个任务”,计算机没有过多地涉猎人的感知、思考、复杂判断,甚至于情感。
1700532412
1700532413
然而,近几年来机器完成的任务,从复杂性和形式越来越逼近人类。比如,基于机器学习的自动驾驶技术已经趋于成熟,这项技术不仅会对人们的出行方式有革命性的影响,而且会影响到城市建设、个人消费、生活方式。人们也许再也不需要拥有汽车,再也不需要会开车。大家对这类新技术的快速到来既兴奋又恐惧,一方面享受技术带来的便利,另一方面又对太快的变化有些手足无措。
1700532414
1700532415
另外,计算机的自学习能力不断增强。现代机器学习算法,尤其深度学习类机器学习算法的发展,使机器的行为不再是相对可预测的“程序”或者“逻辑”,而更像“黑盒思考”,有了近乎人类的难以解释的思考能力。
1700532416
1700532417
然而,仔细看来,虽然在不少特殊领域中,人工智能有了突飞猛进的发展,但是距离人工智能的鼻祖们在第一次浪潮时研究的通用智能(general purpose intelligence)其实还相差非常远。这是第二个事实。机器还是被放在特定情况下完成特定任务,只不过任务更复杂了。机器还是缺少一些最基本的人的智能,比如常识。人工智能仍然无法理解哪怕是简单的情感,比如害怕。对两三岁的孩子来说非常简单的帮忙、合作,机器都是做不到的。好比有人开玩笑说:“它们还是不会炒鸡蛋。”
1700532418
1700532419
第三个事实,是这次人工智能和机器学习的应用场景非常宽广。近几年人工智能和机器学习应用的大发展,这个曾经是学术研究领域的概念一时间进入大众视野,成为和未来相关的必谈话题。计算机视觉、深度学习、机器人技术、自然语言理解,都被提到应用层。算法类的应用走出学术界,深入社会的各个角落, 渗入人们生活的方方面面。大家熟知的有人脸识别、自动驾驶、医疗诊断、机器助手、智慧城市、新媒体、游戏、教育等,还有并不常被谈论的比如农业生产的自动化、老人和儿童的护理、危险情景的操作、交通调度,等等。我们很难想象社会的哪一个方面,不会被这次浪潮所波及。
1700532420
1700532421
向前看十年,人工智能和机器学习的大发展,在于这些技术的普及和应用。大批的新应用将会被开发,人工智能基础设施会迅速完善,原有的传统软件和应用需要被迁移使用新的算法。所以,现在是成为一个人工智能和机器学习专家的良机。
1700532422
[
上一页 ]
[ :1.700532373e+09 ]
[
下一页 ]