打字猴:1.700532432e+09
1700532432
1700532433 抱着试一试的心理,我让公司里的同事自愿报名参加这个集体项目。一共有15位资深研究员和算法工程师参与了这本书的内容创作,这是个成功的合作案例。我们先学习了一下现有的相关书籍,然后头脑风暴了一番,觉得我们可以做一个问答集,以比较有趣的问答形式,集中当前算法工程师和研究员感兴趣的话题,用问答引出这个行业的基本概念。
1700532434
1700532435 在互联网行业,敏捷开发都是以最快的速度,做一个“最小化产品”,让用户的反馈来带领产品的方向。我们写这本书也是如此。为了让大家能够落笔写出没有错误、通俗易懂的问答,为了收集读者的反馈,也为了不把写一本大部头书列为第一天的目标,我们先在Hulu的微信公众号上,以每周发两个问答的形式,从2017年11月到2018年3月期间,一共发出了30篇“机器学习问答”系列文章。这些文章受到了业界好评,也收到各种问题和反馈,成了我们这本书的核心内容。
1700532436
1700532437 关于书的章节组织,我们也进行过仔细的讨论。人工智能和机器学习算法范围很大,我们的理念是要涵盖该领域最基本的内容,介绍基本概念,同时,跟上算法发展的最新步伐。所以本书介绍了传统机器学习算法,比如逻辑回归、决策树等,同时花了比较大的篇幅介绍近几年流行的最新算法,包括各种神经网络(深度学习)、强化学习、集成学习等,还会涉猎学术界正在讨论中的新领域和新算法。同时,本书强调了实现一个企业里真正实用的算法系统所需要的技能,比如采样、特征工程、模型评估。因为机器学习算法往往需要比较深的背景知识,所以在每个问题和解答之前,会对该领域做简单的背景介绍。每个问答有不同的难度,以供读者自我衡量。
1700532438
1700532439 在核心的机器学习算法问答内容之外,我们增加了两个部分,一是“机器学习算法工程师的自我修养”,介绍业界典型的算法工程师的工作内容和要求。这些实例可以帮助广大的读者了解掌握机器学习技能以后的工作和去向。二是“人工智能热门应用”,相信不少读者都听说过这些应用的故事,比如无人驾驶车、AlphaGo等。我们希望从内行人的角度,解释一下这些超级应用背后的原理是什么。当你读完本书,掌握了机器学习技能以后,你也可以在幕后操作这些热门的智能应用了。
1700532440
1700532441 本书信息量很大,涉猎人工智能和机器学习的各个子领域。每个公司、每个业务、每个职位,不一定会用到全部的技能。所以关于阅读这本书,我有以下几个建议。
1700532442
1700532443 (1)顺读法:从头至尾阅读。如果你能读懂全部内容,所有的题目都会解答,欢迎你到Hulu来申请工作吧!
1700532444
1700532445 (2)由简至难法: 每道题的旁边都标明了难度。一星最简单,五星最难。在本书中,还提供了一个题目的列表。一颗星的题目,主要是介绍基本概念,或者是为什么要做某一件事,比如 “什么是ROC曲线?”“为什么需要对数值类型的特征做归一化?”。如果你是机器学习的入门学习者,可以从背景知识和简单的题目出发,循序渐进。
1700532446
1700532447 (3)目标工作法:不是所有的公司、所有的职位都需要懂得各类算法。如果你目前的工作或者想去的工作在某个领域,它们可能会用到某几类算法。如果你对某个新的领域很感兴趣,比如循环神经网络,那你可以专攻这些章节。不过无论用哪类算法,特征工程、模型评估等基本技能都是很重要的。
1700532448
1700532449 (4)互联网阅读法:一本书很难把广泛的领域讲得面面俱到,尤其是题目和解答,可以举一反三有很多花样。所以,我们在很多章节后都有总结和扩展。对某个领域感兴趣的朋友们,可以以这本书为起点,深入到扩展阅读,成为这一方面的专家。
1700532450
1700532451 (5)老板读书法:如果你是一个技术管理者,你需要解决的问题是算法可能对你现有的技术体系有什么帮助,和怎么找到合适的人,帮你做出智能的产品。建议你可以粗略地浏览一下本书,了解机器学习的各个技术领域,找到合适的解决方案。然后,你就可以用本书作面试宝典了。
1700532452
1700532453 这本书出版的目的,是让更多的人练习和掌握机器学习相关的知识,帮助计算机行业人员了解算法工程师需要的实际技能,帮助软件工程师成为出色的数据科学家,帮助公司的管理者了解人工智能系统需要的人才和技能,帮助所有对人工智能和机器学习感兴趣的朋友们走在技术和时代的前沿。
1700532454
1700532455 人工智能和机器学习的算法还在日新月异地发展中,这本书也会不断更新,不断地出新版本。希望得到读者朋友们的悉心指正,让我们一起跟上这个技术领域的进步步伐。
1700532456
1700532457
1700532458
1700532459
1700532460 2018年4月10日
1700532461
1700532462
1700532463
1700532464
1700532465 百面机器学习:算法工程师带你去面试 [:1700532166]
1700532466 百面机器学习:算法工程师带你去面试 机器学习算法工程师的自我修养
1700532467
1700532468 通往机器学习算法工程师的进阶之路是崎岖险阻的。《线性代数》 《统计学习方法》《机器学习》《模式识别》《深度学习》,以及《颈椎病康复指南》,这些书籍将长久地伴随着你的工作生涯。
1700532469
1700532470 除了拥有全面、有条理的知识储备,我认为,想成为一名优秀的算法工程师,更重要的是对算法模型有着发自心底的热忱,对研究工作有一种匠心精神。这种匠心精神,直白来讲,可以概括为:发现问题的眼光、解决问题的探索精神,以及对问题究原竟委的执着追求。这里,我想给大家分享一个小故事,也是发生在本书作者身边真实的情景。
1700532471
1700532472 在微信红包占领家家户户年夜饭的那个时代,我们的小伙伴也没有例外。一群心有猛虎、细嗅蔷薇的算法研究员深切意识到自己不仅手速慢,运气也可谓糟糕。在埋头疯点手机屏幕的间隙,他们查阅了抢红包策略的相关文献,发现国内外对这一理论框架的探究极度匮乏。知识拯救命运,他们决定将红包机制的公平性提升到理论高度。通过大量的模拟实验,统计在不同顺位领到红包的大小。数据分析显示,越后面领到红包的人,虽然红包金额的期望(均值)和前面的人相同,但方差会更大,这也意味着他们更容易获得一些大额红包。从此,掌握这一规律的研究员们在各个群中“屡试不爽”,再也没有抢到过红包,留下的只有“手慢了,红包派完了”几个大字。
1700532473
1700532474 新年钟声敲响的时分临近,Boss级别的人物往往会在群里发一些超级大额的红包。最夸张的一次有一位幸运儿在10人红包中领到2角钱,还没来得及在心中完成“老板真抠门”的碎碎念,抬头定睛一看,最佳手气500多元。判若云泥的手气虽没有埋下同事关系间的芥蒂,却让这帮算法工程师们产生了新的思考——如果把大额红包分成多份给大家抢,会减小“人品”因素带来的“贫富差距”吗?理论结合实际,他们不仅通过数学推导确认这一结论,还设计了一系列实验证明了多个红包的确会缩小不同人领到红包金额之间的差异性(方差)。从此,他们组的Leader在发大红包的时候都会刻意平均分成几份,既增加了大家抢红包的乐趣,又避免了有人因运气不佳而扼腕兴叹的愤懑。
1700532475
1700532476 当然,故事不止于此。他们还利用红包的特性编写了一系列面试题,筛选着一批又一批的机器学习算法工程师,例如,“用红包产生随机数”“用红包随机选出n个候选人”,诸如此类源自生活的小问题在本书后续章节中亦不难寻其踪迹。
1700532477
1700532478 这种探究问题的匠心精神充斥着他们生活的各个角落。每天下楼吃饭等电梯的时候,因担心上厕所错过电梯,他们建立多个模型分析不同时段电梯平均等待时间对应厕所时机的最优选择;在夕阳的余晖下欣赏湖光塔影时,他们会思考为何粼粼波光成了图像编码中的棘手难题;打开购物APP看着目不暇接的喜欢抑或不喜欢的商品,他们反思自己搭建的推荐系统是否也会让用户有着相同的无奈或是欣喜。每一件小事,因为对研究有了热爱,都可以成为工作的一部分,成为开启机器学习大门的钥匙。
1700532479
1700532480 工作中的算法工程师,很多时候,会将生活中转瞬即逝的灵感,付诸产品化。组里的一位同事在看某国产剧的时候,发现可以非常方便地跳过片头和片尾。从消费者的角度出发,这的确是一个大有裨益的产品特征,于是他仔细统计了我们自己平台的视频源数据,发现只有一部分视频含有片头、片尾的时间点信息,而且都是人为标记的。试想,对于一家具有百万量级内容源的视频公司,在所有的剧集上人为标记片头、片尾信息有如天方夜谭。通过广泛的背景调研、方法尝试,攫取前人工作之精华,不断加以创新,依据自己的数据特点量体裁衣,他们的团队设计出了一种基于深度神经网络与浅层特征融合的片尾自动检测模型。经过反复的迭代与充分的实验,得到了令人满意的结果。这一工作也申请了美国发明专利,并一步步走向产品化。
1700532481
[ 上一页 ]  [ :1.700532432e+09 ]  [ 下一页 ]