1700533918
图2.5 欠拟合与过拟合
1700533919
1700533920
可以看出,图2.5(a)是欠拟合的情况,拟合的黄线没有很好地捕捉到数据的特征,不能够很好地拟合数据。图2.5(c)则是过拟合的情况,模型过于复杂,把噪声数据的特征也学习到模型中,导致模型泛化能力下降,在后期应用过程中很容易输出错误的预测结果。
1700533921
1700533922
问题2 能否说出几种降低过拟合和欠拟合风险的方法?
1700533923
1700533924
难度:★★☆☆☆
1700533925
1700533926
分析与解答
1700533927
1700533928
■ 降低“过拟合”风险的方法
1700533929
1700533930
(1)从数据入手,获得更多的训练数据。使用更多的训练数据是解决过拟合问题最有效的手段,因为更多的样本能够让模型学习到更多更有效的特征,减小噪声的影响。当然,直接增加实验数据一般是很困难的,但是可以通过一定的规则来扩充训练数据。比如,在图像分类的问题上,可以通过图像的平移、旋转、缩放等方式扩充数据;更进一步地,可以使用生成式对抗网络来合成大量的新训练数据。
1700533931
1700533932
(2)降低模型复杂度。在数据较少时,模型过于复杂是产生过拟合的主要因素,适当降低模型复杂度可以避免模型拟合过多的采样噪声。例如,在神经网络模型中减少网络层数、神经元个数等;在决策树模型中降低树的深度、进行剪枝等。
1700533933
1700533934
(3)正则化方法。给模型的参数加上一定的正则约束,比如将权值的大小加入到损失函数中。以L2正则化为例:
1700533935
1700533936
1700533937
1700533938
1700533939
(2.18)
1700533940
1700533941
这样,在优化原来的目标函数C0的同时,也能避免权值过大带来的过拟合风险。
1700533942
1700533943
(4)集成学习方法。集成学习是把多个模型集成在一起,来降低单一模型的过拟合风险,如Bagging方法。
1700533944
1700533945
■ 降低“欠拟合”风险的方法
1700533946
1700533947
(1)添加新特征。当特征不足或者现有特征与样本标签的相关性不强时,模型容易出现欠拟合。通过挖掘“上下文特征”“ID类特征”“组合特征”等新的特征,往往能够取得更好的效果。在深度学习潮流中,有很多模型可以帮助完成特征工程,如因子分解机、梯度提升决策树、Deep-crossing等都可以成为丰富特征的方法。
1700533948
1700533949
(2)增加模型复杂度。简单模型的学习能力较差,通过增加模型的复杂度可以使模型拥有更强的拟合能力。例如,在线性模型中添加高次项,在神经网络模型中增加网络层数或神经元个数等。
1700533950
1700533951
(3)减小正则化系数。正则化是用来防止过拟合的,但当模型出现欠拟合现象时,则需要有针对性地减小正则化系数。
1700533952
1700533953
1700533954
1700533955
1700533957
百面机器学习:算法工程师带你去面试 第3章 经典算法
1700533958
1700533959
不忘初心,方得始终。何谓“初心”?初心便是在深度学习、人工智能呼风唤雨的时代,对数据和结论之间那条朴素之路的永恒探寻,是集前人之大智,真诚质朴求法向道的心中夙愿。
1700533960
1700533961
没有最好的分类器,只有最合适的分类器。随着神经网络模型日趋火热,深度学习大有一统江湖之势,传统机器学习算法似乎已经彻底被深度学习的光环所笼罩。然而,深度学习是数据驱动的,失去了数据,再精密的深度网络结构也是画饼充饥,无的放矢。在很多实际问题中,我们很难得到海量且带有精确标注的数据,这时深度学习也就没有大显身手的余地,反而许多传统方法可以灵活巧妙地进行处理。
1700533962
1700533963
本章将介绍有监督学习中的几种经典分类算法,从数学原理到实例分析,再到扩展应用,深入浅出地为读者解读分类问题历史长河中的胜败兴衰。掌握机器学习的基本模型,不仅是学好深度学习、成为优秀数据工程师的基础,更可以将很多数学模型、统计理论学以致用,探寻人工智能时代数据海洋中的规律与本源。
1700533964
1700533965
1700533966
1700533967
[
上一页 ]
[ :1.700533918e+09 ]
[
下一页 ]