打字猴:1.700534018e+09
1700534018
1700534019
1700534020
1700534021 图3.8 魔鬼视角下分球问题3的解
1700534022
1700534023 后来,“无聊”的科学家们把这些球称为“数据”,把木棍称为“分类面”,找到最大间隔的木棒位置的过程称为“优化”,拍桌子让球飞到空中的念力叫“核映射”,在空中分隔球的纸片称为“分类超平面”。这便是SVM的童话故事。
1700534024
1700534025 在现实世界的机器学习领域,SVM涵盖了各个方面的知识,也是面试题目中常见的基础模型。本节的第1个问题考察SVM模型推导的基础知识;第2题~第4题则会侧重对核函数(Kernel Function)的理解。
1700534026
1700534027 知识点
1700534028
1700534029 SVM模型推导,核函数,SMO(Sequential Minimal Optimization)算法
1700534030
1700534031 问题1 在空间上线性可分的两类点,分别向SVM分类的超平面上做投影,这些点在超平面上的投影仍然是线性可分的吗?
1700534032
1700534033 难度:★★★☆☆
1700534034
1700534035 分析与解答
1700534036
1700534037 首先明确下题目中的概念,线性可分的两类点,即通过一个超平面可以将两类点完全分开,如图3.9所示。假设绿色的超平面(对于二维空间来说,分类超平面退化为一维直线)为SVM算法计算得出的分类面,那么两类点就被完全分开。我们想探讨的是:将这两类点向绿色平面上做投影,在分类直线上得到的黄棕两类投影点是否仍然线性可分,如图3.10所示。
1700534038
1700534039
1700534040
1700534041
1700534042 图3.9 支持向量机分类面
1700534043
1700534044
1700534045
1700534046
1700534047 图3.10 样本点在分类面上投影
1700534048
1700534049 显然一眼望去,这些点在分类超平面(绿色直线)上相互间隔,并不是线性可分的。考虑一个更简单的反例,设想二维空间中只有两个样本点,每个点各属于一类的分类任务,此时SVM的分类超平面(直线)就是两个样本点连线的中垂线,两个点在分类面(直线)上的投影会落到这条直线上的同一个点,自然不是线性可分的。
1700534050
1700534051 但实际上,对于任意线性可分的两组点,它们在SVM分类的超平面上的投影都是线性不可分的。这听上去有些不可思议,我们不妨从二维情况进行讨论,再推广到高维空间中。
1700534052
1700534053 由于SVM的分类超平面仅由支持向量决定(之后会证明这一结论),我们可以考虑一个只含支持向量SVM模型场景。使用反证法来证明。假设存在一个SVM分类超平面使所有支持向量在该超平面上的投影依然线性可分,如图3.11所示。根据简单的初等几何知识不难发现,图中AB两点连线的中垂线所组成的超平面(绿色虚线)是相较于绿色实线超平面更优的解,这与之前假设绿色实线超平面为最优的解相矛盾。考虑最优解对应的绿色虚线,两组点经过投影后,并不是线性可分的。
1700534054
1700534055
1700534056
1700534057
1700534058 图3.11 更优的分类超平面
1700534059
1700534060 我们的证明目前还有不严谨之处,即我们假设了仅有支持向量的情况,会不会在超平面的变换过程中支持向量发生了改变,原先的非支持向量和支持向量发生了转化呢?下面我们证明SVM的分类结果仅依赖于支持向量。考虑SVM推导中的KKT条件要求
1700534061
1700534062
1700534063
1700534064
1700534065 (3.1)
1700534066
1700534067
[ 上一页 ]  [ :1.700534018e+09 ]  [ 下一页 ]