1700534574
1700534575
Gini(D|写代码=会)=0, Gini(D|写代码=不会)=0,
1700534576
1700534577
Gini(D|工资=高)=0.47, Gini(D|工资=中等)=0.3,
1700534578
1700534579
Gini(D|工资=低)=0.4.
1700534580
1700534581
在“年龄”“长相”“工资”“写代码”四个特征中,我们可以很快地发现特征“写代码”的Gini指数最小为0,因此选择特征“写代码”作为最优特征,“写代码=会”为最优切分点。按照这种切分,从根结点会直接产生两个叶结点,基尼指数降为0,完成决策树生长。
1700534582
1700534583
通过对比三种决策树的构造准则,以及在同一例子上的不同表现,我们不难总结三者之间的差异。
1700534584
1700534585
首先,ID3是采用信息增益作为评价标准,除了“会写代码”这一逆天特征外,会倾向于取值较多的特征。因为,信息增益反映的是给定条件以后不确定性减少的程度,特征取值越多就意味着确定性更高,也就是条件熵越小,信息增益越大。这在实际应用中是一个缺陷。比如,我们引入特征“DNA”,每个人的DNA都不同,如果ID3按照“DNA”特征进行划分一定是最优的(条件熵为0),但这种分类的泛化能力是非常弱的。因此,C4.5实际上是对ID3进行优化,通过引入信息增益比,一定程度上对取值比较多的特征进行惩罚,避免ID3出现过拟合的特性,提升决策树的泛化能力。
1700534586
1700534587
其次,从样本类型的角度,ID3只能处理离散型变量,而C4.5和CART都可以处理连续型变量。C4.5处理连续型变量时,通过对数据排序之后找到类别不同的分割线作为切分点,根据切分点把连续属性转换为布尔型,从而将连续型变量转换多个取值区间的离散型变量。而对于CART,由于其构建时每次都会对特征进行二值划分,因此可以很好地适用于连续性变量。
1700534588
1700534589
从应用角度,ID3和C4.5只能用于分类任务,而CART(Classification and Regression Tree,分类回归树)从名字就可以看出其不仅可以用于分类,也可以应用于回归任务(回归树使用最小平方误差准则)。
1700534590
1700534591
此外,从实现细节、优化过程等角度,这三种决策树还有一些不同。比如,ID3对样本特征缺失值比较敏感,而C4.5和CART可以对缺失值进行不同方式的处理;ID3和C4.5可以在每个结点上产生出多叉分支,且每个特征在层级之间不会复用,而CART每个结点只会产生两个分支,因此最后会形成一颗二叉树,且每个特征可以被重复使用;ID3和C4.5通过剪枝来权衡树的准确性与泛化能力,而CART直接利用全部数据发现所有可能的树结构进行对比。
1700534592
1700534593
至此,我们从构造、应用、实现等角度对比了ID3、C4.5、CART这三种经典的决策树模型。这些区别与联系总结起来容易,但在实际应用中还需要读者慢慢体会,针对不同场景灵活变通。
1700534594
1700534595
问题2 如何对决策树进行剪枝?
1700534596
1700534597
难度:★★★☆☆
1700534598
1700534599
一棵完全生长的决策树会面临一个很严重的问题,即过拟合。假设我们真的需要考虑DNA特征,由于每个人的DNA都不同,完全生长的决策树所对应的每个叶结点中只会包含一个样本,这就导致决策树是过拟合的。用它进行预测时,在测试集上的效果将会很差。因此我们需要对决策树进行剪枝,剪掉一些枝叶,提升模型的泛化能力。
1700534600
1700534601
决策树的剪枝通常有两种方法,预剪枝(Pre-Pruning)和后剪枝(Post-Pruning)。那么这两种方法是如何进行的呢?它们又各有什么优缺点?
1700534602
1700534603
分析与解答
1700534604
1700534605
预剪枝,即在生成决策树的过程中提前停止树的增长。而后剪枝,是在已生成的过拟合决策树上进行剪枝,得到简化版的剪枝决策树。
1700534606
1700534607
■ 预剪枝
1700534608
1700534609
预剪枝的核心思想是在树中结点进行扩展之前,先计算当前的划分是否能带来模型泛化能力的提升,如果不能,则不再继续生长子树。此时可能存在不同类别的样本同时存于结点中,按照多数投票的原则判断该结点所属类别。预剪枝对于何时停止决策树的生长有以下几种方法。
1700534610
1700534611
(1)当树到达一定深度的时候,停止树的生长。
1700534612
1700534613
(2)当到达当前结点的样本数量小于某个阈值的时候,停止树的生长。
1700534614
1700534615
(3)计算每次分裂对测试集的准确度提升,当小于某个阈值的时候,不再继续扩展。
1700534616
1700534617
预剪枝具有思想直接、算法简单、效率高等特点,适合解决大规模问题。但如何准确地估计何时停止树的生长(即上述方法中的深度或阈值),针对不同问题会有很大差别,需要一定经验判断。且预剪枝存在一定局限性,有欠拟合的风险,虽然当前的划分会导致测试集准确率降低,但在之后的划分中,准确率可能会有显著上升。
1700534618
1700534619
■ 后剪枝
1700534620
1700534621
后剪枝的核心思想是让算法生成一棵完全生长的决策树,然后从最底层向上计算是否剪枝。剪枝过程将子树删除,用一个叶子结点替代,该结点的类别同样按照多数投票的原则进行判断。同样地,后剪枝也可以通过在测试集上的准确率进行判断,如果剪枝过后准确率有所提升,则进行剪枝。相比于预剪枝,后剪枝方法通常可以得到泛化能力更强的决策树,但时间开销会更大。
1700534622
1700534623
常见的后剪枝方法包括错误率降低剪枝(Reduced Error Pruning,REP)、悲观剪枝(Pessimistic Error Pruning,PEP)、代价复杂度剪枝(Cost Complexity Pruning,CCP)、最小误差剪枝(Minimum Error Pruning,MEP)、CVP(Critical Value Pruning)、OPP(Optimal Pruning)等方法,这些剪枝方法各有利弊,关注不同的优化角度,本文选取著名的CART剪枝方法CCP进行介绍。
[
上一页 ]
[ :1.700534574e+09 ]
[
下一页 ]