打字猴:1.700537388e+09
1700537388
1700537389 (2)令s=x2+y2,则是两个服从标准正态分布的样本,其中用来代替Box-Muller算法中的cosine和sine操作。
1700537390
1700537391 除了逆变换法,我们还可以利用拒绝采样法,选择一个比较好计算累积分布逆函数的参考分布来覆盖当前正态分布(可以乘以一个常数倍),进而转化为对参考分布的采样以及对样本点的拒绝/接收操作。考虑到高斯分布的特性,这里可以用指数分布来作为参考分布。指数分布的累积分布及其逆函数都比较容易求解。由于指数分布的样本空间为x≥0,而标准正态分布的样本空间为(−∞,+∞),因此还需要利用正态分布的对称性来在半坐标轴和全坐标轴之间转化。具体来说,取 λ=1的指数分布作为参考分布,其密度函数为
1700537392
1700537393
1700537394
1700537395
1700537396 (8.12)
1700537397
1700537398 对应的累积分布函数及其逆函数分别为
1700537399
1700537400
1700537401
1700537402
1700537403 (8.13)
1700537404
1700537405
1700537406
1700537407
1700537408 (8.14)
1700537409
1700537410 利用逆变换法很容易得到指数分布的样本,然后再根据拒绝采样法来决定是否接受该样本,接受的概率为
1700537411
1700537412
1700537413
1700537414
1700537415 (8.15)
1700537416
1700537417
1700537418 其中是标准正态分布压缩到正半轴后的概率密度函数,常数因子M需要满足如下条件:
1700537419
1700537420
1700537421
1700537422
1700537423 (8.16)
1700537424
1700537425 实际应用时,M需要尽可能小,这样每次的接受概率大,采样效率更高。因此,可以取
1700537426
1700537427
1700537428
1700537429
1700537430 (8.17)
1700537431
1700537432 计算后得到接受概率
1700537433
1700537434
1700537435
1700537436
1700537437 (8.18)
[ 上一页 ]  [ :1.700537388e+09 ]  [ 下一页 ]