打字猴:1.700541774e+09
1700541774
1700541775 2012年博士毕业于清华大学计算机系。博士期间的研究方向包括计算机图形学、视觉、机器学习等,发表论文多篇。同年加入Hulu,先后从事自然语言处理、推荐算法等方面的研究工作。
1700541776
1700541777 通过这本书的写作,我也提高了很多。原以为把自己会的东西写出来是一个很容易的事情,可是真正开始写作,才知道自己的学识是多么肤浅。通过一遍遍翻阅各种文献资料,一遍遍推敲每一个定义和公式,我也获得了之前从未有过的清晰理解。
1700541778
1700541779 人工智能正改变着这个世界的方方面面,改变着人类历史的进程,也会成为每一个有为青年的必修课。很高兴能成为本书的作者,和大家一起去探索这个充满着朝气和活力的领域。
1700541780
1700541781
1700541782
1700541783
1700541784 百面机器学习:算法工程师带你去面试 [:1700532260]
1700541785 百面机器学习:算法工程师带你去面试 参考文献
1700541786
1700541787 [1] He X, Pan J, Jin O, et al. Practical lessons from predicting clicks on ads at facebook[J]. 2014(12): 1-9.
1700541788
1700541789 [2] Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
1700541790
1700541791 [3] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space[J]. Computer Science, 2013.
1700541792
1700541793 [4] Turk M, Pentland A. Eigenfaces for recognition.[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
1700541794
1700541795 [5] Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic[J]. Journal of the Royal Statistical Society, 2001, 63(2): 411-423.
1700541796
1700541797 [6] Dhillon I S, Guan Y, Kulis B. Kernel k-means: spectral clustering and normalized cuts[C]//Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2004: 551-556.
1700541798
1700541799 [7] Banerjee A, Dave R N. Validating clusters using the Hopkins statistic[C]// IEEE International Conference on Fuzzy Systems, 2004. Proceedings. IEEE, 2004: 149-153 vol.1.
1700541800
1700541801 [8] Liu Y, Li Z, Xiong H, et al. Understanding of internal clustering validation measures[C]//IEEE, International Conference on Data Mining. IEEE, 2011: 911-916.
1700541802
1700541803 [9] Boyd S, Vandenberghe L. Convex optimization[M]. Cambridge University Press, 2004.
1700541804
1700541805 [10] Nesterov Y. A method of solving a convex programming problem with convergence rate $O(1/k^2)$[C]// Soviet Mathematics Doklady. 1983: 372-376.
1700541806
1700541807 [11] Broyden C G. The convergence of a class of double rank minimization algorithms II. The new algorithm[C]// 1970: 222-231.
1700541808
1700541809 [12] Fletcher R. A new approach to variable metric algorithms[J]. Computer Journal,1970, 13(3): 317-322.
1700541810
1700541811 [13] Goldfarb D. A family of variable-metric methods derived by variational means[J]. Mathematics of Computing, 1970, 24(109): 23-26.
1700541812
1700541813 [14] Shanno D F. Conditioning of quasi-Newton methods for function minimization[J]. Mathematics of Computation, 1970, 24(111): 647-656.
1700541814
1700541815 [15] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1-3): 503-528.
1700541816
1700541817 [16] Abramson N, Braverman D, Sebestyen G. Pattern recognition and machine learning[M]. Academic Press, 1963.
1700541818
1700541819 [17] He H, Garcia E A. Learning from imbalanced data[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1263-1284.
1700541820
1700541821 [18] Xu B, Wang N, Chen T, et al. Empirical evaluation of rectified activations in convolutional network[J]. Computer Science, 2015.
1700541822
1700541823 [19] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
[ 上一页 ]  [ :1.700541774e+09 ]  [ 下一页 ]