打字猴:1.700541823e+09
1700541823 [19] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958.
1700541824
1700541825 [20] Kim Y. Convolutional neural networks for sentence classification[J]. Eprint Arxiv, 2014.
1700541826
1700541827 [21] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]// Computer Vision and Pattern Recognition. IEEE, 2016: 770-778.
1700541828
1700541829 [22] Liu P, Qiu X, Huang X. Recurrent neural network for text classification with multi-task learning[J]. 2016: 2873-2879.
1700541830
1700541831 [23] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
1700541832
1700541833 [24] Chung J, Gulcehre C, Cho K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. Eprint Arxiv, 2014.
1700541834
1700541835 [25] Le Q V, Jaitly N, Hinton G E. A simple way to initialize recurrent networks of rectified linear units[J]. Computer Science, 2015.
1700541836
1700541837 [26] Gers F A, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM[M]. Istituto Dalle Molle Di Studi Sull Intelligenza Artificiale, 1999: 850-855.
1700541838
1700541839 [27] Gers F A, Schmidhuber J. Recurrent nets that time and count[C]// Ieee-Inns-Enns International Joint Conference on Neural Networks. IEEE, 2000: 189-194 vol.3.
1700541840
1700541841 [28] Weston J, Chopra S, Bordes A. Memory Networks[J]. Eprint Arxiv, 2014.
1700541842
1700541843 [29] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. Computer Science, 2014.
1700541844
1700541845 [30] Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention[J]. Computer Science, 2015: 2048-2057.
1700541846
1700541847 [31] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. Computer Science, 2013.
1700541848
1700541849 [32] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
1700541850
1700541851 [33] Goodfellow I. NIPS 2016 Tutorial: generative adversarial networks[J]. 2016.
1700541852
1700541853 [34] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. 2017.
1700541854
1700541855 [35] Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks[J]. 2017.
1700541856
1700541857 [36] Denton E L, Chintala S, Fergus R. Deep generative image models using a Laplacian pyramid of adversarial networks[C]//International Conference on Neural Information Processing Systems. MIT Press, 2015: 1486-1494.
1700541858
1700541859 [37] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. Computer Science, 2015.
1700541860
1700541861 [38] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: the all convolutional net[J]. Eprint Arxiv, 2014.
1700541862
1700541863 [39] Ioffe S, Szegedy C. Batch Normalization: accelerating deep network training by reducing internal covariate shift[J]. 2015: 448-456.
1700541864
1700541865 [40] Dumoulin V, Belghazi I, Poole B, et al. Adversarially learned inference[J]. 2016.
1700541866
1700541867 [41] Wang J, Yu L, Zhang W, et al. Irgan: a minimax game for unifying generative and discriminative information retrieval models[J]. 2017.
1700541868
1700541869 [42] Sutton R S, McAllester D A, Singh S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]//Advances in neural information processing systems. 2000: 1057-1063.
1700541870
1700541871 [43] Yu L, Zhang W, Wang J, et al. Seqgan: sequence generative adversarial nets with policy gradient[C]//AAAI Conference on Artificial Intelligence, 4-9 February 2017, San Francisco, California, Usa. 2017.
1700541872
[ 上一页 ]  [ :1.700541823e+09 ]  [ 下一页 ]