打字猴:1.70054184e+09
1700541840
1700541841 [28] Weston J, Chopra S, Bordes A. Memory Networks[J]. Eprint Arxiv, 2014.
1700541842
1700541843 [29] Bahdanau D, Cho K, Bengio Y. Neural machine translation by jointly learning to align and translate[J]. Computer Science, 2014.
1700541844
1700541845 [30] Xu K, Ba J, Kiros R, et al. Show, attend and tell: neural image caption generation with visual attention[J]. Computer Science, 2015: 2048-2057.
1700541846
1700541847 [31] Mnih V, Kavukcuoglu K, Silver D, et al. Playing atari with deep reinforcement learning[J]. Computer Science, 2013.
1700541848
1700541849 [32] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks[J]. Advances in Neural Information Processing Systems, 2014, 3: 2672-2680.
1700541850
1700541851 [33] Goodfellow I. NIPS 2016 Tutorial: generative adversarial networks[J]. 2016.
1700541852
1700541853 [34] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. 2017.
1700541854
1700541855 [35] Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks[J]. 2017.
1700541856
1700541857 [36] Denton E L, Chintala S, Fergus R. Deep generative image models using a Laplacian pyramid of adversarial networks[C]//International Conference on Neural Information Processing Systems. MIT Press, 2015: 1486-1494.
1700541858
1700541859 [37] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. Computer Science, 2015.
1700541860
1700541861 [38] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: the all convolutional net[J]. Eprint Arxiv, 2014.
1700541862
1700541863 [39] Ioffe S, Szegedy C. Batch Normalization: accelerating deep network training by reducing internal covariate shift[J]. 2015: 448-456.
1700541864
1700541865 [40] Dumoulin V, Belghazi I, Poole B, et al. Adversarially learned inference[J]. 2016.
1700541866
1700541867 [41] Wang J, Yu L, Zhang W, et al. Irgan: a minimax game for unifying generative and discriminative information retrieval models[J]. 2017.
1700541868
1700541869 [42] Sutton R S, McAllester D A, Singh S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]//Advances in neural information processing systems. 2000: 1057-1063.
1700541870
1700541871 [43] Yu L, Zhang W, Wang J, et al. Seqgan: sequence generative adversarial nets with policy gradient[C]//AAAI Conference on Artificial Intelligence, 4-9 February 2017, San Francisco, California, Usa. 2017.
1700541872
1700541873 [44] Bahdanau D, Brakel P, Xu K, et al. An actor-critic algorithm for sequence prediction[J]. 2016.
1700541874
1700541875 [45] Hu J, Zeng H J, Li H, et al. Demographic prediction based on user’s browsing behavior[C]//International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May. DBLP, 2007: 151-160.
1700541876
1700541877 [46] Peng B, Wang Y, Sun J T. Mining mobile users’ activities based on search query text and context[C]//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Springer-Verlag, 2012: 109-120.
1700541878
1700541879 [47] Wang J, Zhang W, Yuan S. Display advertising with real-time bidding (RTB) and behavioural targeting[J]. Foundations & Trends® in Information Retrieval, 2017, 11(4-5).
1700541880
1700541881 [48] He X, Pan J, Jin O, et al. Practical lessons from predicting clicks on ads at facebook[M]. ACM, 2014.
1700541882
1700541883 [49] Zhang W, Du T, Wang J. Deep learning over multi-field categorical data[C]// European Conference on Information Retrieval. Springer, Cham, 2016: 45-57.
1700541884
1700541885 [50] Azad H K, Deepak A. Query expansion techniques for information retrieval: a survey[J]. 2017.
1700541886
1700541887 [51] Chen P, Ma W, Mandalapu S, et al. Ad serving using a compact allocation plan[C]// ACM, 2012: 319-336.
1700541888
1700541889 [52] Ren K, Zhang W, Chang K, et al. Bidding machine: learning to bid for directly optimizing profits in display advertising[J]. IEEE Transactions on Knowledge & Data Engineering, 2018, 30(4): 645-659.
[ 上一页 ]  [ :1.70054184e+09 ]  [ 下一页 ]