1700541852
1700541853
[34] Arjovsky M, Chintala S, Bottou L. Wasserstein GAN[J]. 2017.
1700541854
1700541855
[35] Arjovsky M, Bottou L. Towards principled methods for training generative adversarial networks[J]. 2017.
1700541856
1700541857
[36] Denton E L, Chintala S, Fergus R. Deep generative image models using a Laplacian pyramid of adversarial networks[C]//International Conference on Neural Information Processing Systems. MIT Press, 2015: 1486-1494.
1700541858
1700541859
[37] Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks[J]. Computer Science, 2015.
1700541860
1700541861
[38] Springenberg J T, Dosovitskiy A, Brox T, et al. Striving for simplicity: the all convolutional net[J]. Eprint Arxiv, 2014.
1700541862
1700541863
[39] Ioffe S, Szegedy C. Batch Normalization: accelerating deep network training by reducing internal covariate shift[J]. 2015: 448-456.
1700541864
1700541865
[40] Dumoulin V, Belghazi I, Poole B, et al. Adversarially learned inference[J]. 2016.
1700541866
1700541867
[41] Wang J, Yu L, Zhang W, et al. Irgan: a minimax game for unifying generative and discriminative information retrieval models[J]. 2017.
1700541868
1700541869
[42] Sutton R S, McAllester D A, Singh S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]//Advances in neural information processing systems. 2000: 1057-1063.
1700541870
1700541871
[43] Yu L, Zhang W, Wang J, et al. Seqgan: sequence generative adversarial nets with policy gradient[C]//AAAI Conference on Artificial Intelligence, 4-9 February 2017, San Francisco, California, Usa. 2017.
1700541872
1700541873
[44] Bahdanau D, Brakel P, Xu K, et al. An actor-critic algorithm for sequence prediction[J]. 2016.
1700541874
1700541875
[45] Hu J, Zeng H J, Li H, et al. Demographic prediction based on user’s browsing behavior[C]//International Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, May. DBLP, 2007: 151-160.
1700541876
1700541877
[46] Peng B, Wang Y, Sun J T. Mining mobile users’ activities based on search query text and context[C]//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Springer-Verlag, 2012: 109-120.
1700541878
1700541879
[47] Wang J, Zhang W, Yuan S. Display advertising with real-time bidding (RTB) and behavioural targeting[J]. Foundations & Trends® in Information Retrieval, 2017, 11(4-5).
1700541880
1700541881
[48] He X, Pan J, Jin O, et al. Practical lessons from predicting clicks on ads at facebook[M]. ACM, 2014.
1700541882
1700541883
[49] Zhang W, Du T, Wang J. Deep learning over multi-field categorical data[C]// European Conference on Information Retrieval. Springer, Cham, 2016: 45-57.
1700541884
1700541885
[50] Azad H K, Deepak A. Query expansion techniques for information retrieval: a survey[J]. 2017.
1700541886
1700541887
[51] Chen P, Ma W, Mandalapu S, et al. Ad serving using a compact allocation plan[C]// ACM, 2012: 319-336.
1700541888
1700541889
[52] Ren K, Zhang W, Chang K, et al. Bidding machine: learning to bid for directly optimizing profits in display advertising[J]. IEEE Transactions on Knowledge & Data Engineering, 2018, 30(4): 645-659.
1700541890
1700541891
[53] Turing A M. Digital computers applied to games[J]. Faster Than Thought, 1953: 623-650.
1700541892
1700541893
[54] Schaeffer J, Lake R, Lu P, et al. Chinook: the world man-machine checkers champion[J]. 1996, 17(1): 21-29.
1700541894
1700541895
[55] Schaeffer J, Burch N, Björnsson Y, et al. Checkers is solved[J]. Science, 2007, 317(5844): 1518-1522.
1700541896
1700541897
[56] Campbell M, Hoane A J, Hsu F. Deep blue[J]. Artificial Intelligence, 2002, 134(1): 57-83.
1700541898
1700541899
[57] Tesauro G. Temporal difference learning and TD-gammon[J]. Communications of the Acm, 1995, 38(3): 58-68.
1700541900
1700541901
[58] Silver D, Huang A, Maddison C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
[
上一页 ]
[ :1.700541852e+09 ]
[
下一页 ]