1700550181
此外,我们所处的物质世界和精神世界做不到只服从一种规则。椅子有腿,但当它有底座或软座,又或者它挂在天花板时则是例外。在2002年,两名男子不能在美国结婚,但2015年他们就可以这样做了。松鼠不能高飞,但那些滑翔飞行的除外。在英语中,否定加否定可以变成肯定,比如说“她从未不开朗”,但肯定加肯定永远不会变成否定。是的,就是这样。
1700550182
1700550183
为语言、家具等复杂事物的所有相关规则编码,输入电脑系统,然后让系统做些有用的事,这类尝试大多不成功。电脑科学家恩内斯特·戴维斯(Ernest Davis)和神经科学家加里·马库斯写道:“截至2014年,很少有商业化的系统在自动化常识推理方面有重大应用……还没人造出一个令人满意的常识推理器。”如上一章所述,常识有偏见、有错漏,但即便如此,对于绝大多数人来说它已经做得很棒了,它引领我们通过了世上纷繁复杂的考验。我们还没有设计出可以了解世界如何实际运行、人类自己的生物系统1又如何工作的符号型数字化系统。我们的系统越来越精于狭义的人工智能,如围棋、图像识别等特定领域,但是我们还远未实现DeepMind共同创始人谢恩·莱格(Shane Legg)所说的通用人工智能,即未能将智能应用于各种意想不到的问题。
1700550184
1700550185
又见波兰尼悖论
1700550186
1700550187
戴维斯和马库斯讨论了建立以上系统的最大障碍:“进行常识推理时,人们……借鉴的是……基本上无法自省的推理过程。”换句话说,人类经由多如牛毛的规则而驾驭自如的认知工作,其实不间断地体现着波兰尼悖论,也就是“我们所知的多于我们所能说的”。如第一章所述,直到最近,这一悖论使任何人都无法开发可以像人类顶尖高手一样下围棋的软件。我们必须谨记这一悖论随处可见。在很多重要的情况下,我们根本就不知道,也无法知道自己正在用什么规则来做对某些事。
1700550188
1700550189
这似乎是任何自动化或人工智能的绝对障碍。如果包括人类本身在内,地球上没有实体知道人类成就某事的规则,那么我们又如何创建一个基于规则的系统,或者说创建任何电脑系统,然后用它来模拟这些成就?波兰尼悖论似乎对可以自动化的人类工作类型设置了极大限制。正如我们麻省理工学院的同事、经济学家戴维·奥托(David Autor)所说:“电脑对人的替代范围是有限的,因为一个人能够意会很多任务,做起来也毫不费劲儿,电脑程序和其他人却不能确切表述相关的规则或程序。”
1700550190
1700550191
机器学习
1700550192
1700550193
人工智能研究者的另一个主要阵营——避开符号型方法的阵营,自20世纪50年代末以来一直在尝试攻克波兰尼悖论,其方法就是建立用小孩子学语言的方式学任务的系统,要点是经验、重复以及获取反馈。这些学者开创了机器学习领域,这恰恰体现了该阵营所做的事情。
1700550194
1700550195
以这种方式学习的首批数字化机器之一,就是美国海军资助的“感知器”(Perceptron),它是一台思考和学习的机器,由康奈尔航空实验室的科学家弗兰克·罗森布拉特(Frank Rosenblatt)领衔开发。“感知器”于1957年首次亮相,其目标是能够将看到的东西分类,例如区分狗类与猫类。为此,它被设置成有点儿像缩微版大脑的样子。
1700550196
1700550197
我们大脑中的大约1 000亿个神经元并没有以任何整齐的方式排列。相反,它们是深度关联的:典型的人类神经元从多达1万个的相邻神经元获取输入或信息,然后将输出发送给数目大致相等的神经元。每当足够的输入发出足够强的电信号时,神经元就将自己的信号发送到其所有的输出。在这里,“足够”和“足够强”的定义随着时间的推移而变化,它们取决于反馈以及重要性,也就是神经元给予其每个输入的权重。透过这个奇怪、复杂、不断展开的过程,产生了记忆、技能、系统1和系统2、思想火花和认知偏见,以及其他所有的脑力活动。
1700550198
1700550199
“感知器”并没有尝试做这么多的事情。它只想做简单的图像分类。这台机器有400个光电池,它们为刺激杂乱的机器大脑而随机连接到一层人造的神经元。通过这个神经网络的早期演示,以及罗森布拉特的自信预测,《纽约时报》在1958年报道说:“它是(海军)所希望的电脑的胚胎,它将会走路、谈话、观看、写作、复制自己并意识到自己的存在。”
1700550200
1700550201
然而,说好的突破并没有很快到来,1969年,马文·明斯基(Marvin Minsky)和西蒙·派珀特(Seymour Papert)发表了一篇题为“感知器:计算几何学导论”的毁灭性评论。他们以数学方式表明,罗森布拉特的设计不能完成一些基本的分类任务。对于人工智能领域的多数人来说,这足以让他们不仅疏远“感知器”,而且疏远神经网络和一般意义上的机器学习等广义概念。对于两个阵营的研究人员来说,人工智能的严冬降临了。
1700550202
1700550203
坚持总有回报
1700550204
1700550205
有几个团队继续研究机器学习,他们仍然相信,让电脑像人类一样思考的正确方法,就是建立可以通过实例学习的脑启发神经网络。这些研究人员终于了解并克服了“感知器”的局限性。他们的做法结合了高深的数学、功能更强大的电脑硬件和一种实用的方法,此举从大脑的工作方式获得启发,但又不受其约束。例如,电信号只能沿着大脑神经元的一个方向流动,而由保罗·沃伯斯(Paul Werbos)、杰夫·辛顿(Geoff Hinton)和扬·乐坤(Yann LeCun)等人在20世纪80年代建立的成功的机器学习系统则允许信息通过网络向前及向后传播。
1700550206
1700550207
这种“反向传播”带来了更好的表现,但进展仍然非常缓慢。到20世纪90年代,扬·乐坤开发的用于识别数字的机器学习系统阅读了美国20%的所有手写支票,但是几乎没有其他的现实应用。
1700550208
1700550209
阿尔法狗最近的胜利表明,现在的情况已经大不相同。诚然,阿尔法狗包含了对大量可能性的高效搜索,这是基于规则的人工智能系统的典型元素,但它的核心是机器学习系统。如其创建者所述,它是“一种新的电脑围棋方法,它使用深层神经网络,其训练融合了与人类专家对弈的监督式学习和自我对弈的强化式学习”。
1700550210
1700550211
阿尔法狗远不是一个孤立的例子。过去几年,神经网络处于蓬勃发展之中。它们现在是人工智能的主要类型,而且似乎有可能保持一段时间。由此,人工智能领域终于兑现了其早期的一些承诺。
1700550212
1700550213
为什么有人工智能
1700550214
1700550215
这个蓬勃发展的局面是如何发生的?为什么它来得如此之快,如此出人意料?通常情况下,这样的进步汇聚了一些因素,它既是恒力所致,也是机缘使然。许多业内人士认为,其中最重要的因素是摩尔定律。神经网络随着规模的增加而变得更加强大、多能,而且直到最近,规模足够大的神经网络才变得足够便宜,可供许多研究人员之用。
1700550216
1700550217
云计算帮助预算较小的项目开启了人工智能研究之路。技术企业家埃利奥特·特纳(Elliot Turner)估计,到2016年秋天,开展前沿性机器学习项目所需的计算能力可从亚马逊云服务(AWS)等云计算提供商那里租用,成本约为1.3万美元。奇怪的是,现代视频游戏的普及也大大推动了机器学习。驱动流行游戏机的专用图形处理器(GPU)非常适合神经网络所需的各种计算,因此被用于大量的相关任务。人工智能研究者吴恩达(Andrew Ng)告诉我们:“前沿的研究团队用图形处理器做了我两三年前无法想象的超级复杂的事情。”
1700550218
1700550219
对机器学习来说,与摩尔定律同等重要的是大数据,即数字化的文本、图片、声音、视频、传感器读数等在近期的大爆发。像幼童需要听很多词语和句子来学习语言一样,机器学习系统需要接触许多实例,以便改进语音识别、图像分类和其他任务。[6]我们现在有了有效的、源源不断的数据,而且随时都在生成更多的数据。辛顿、扬·乐坤和吴恩达等人建立的系统具有非常理想的性能,其性能随着接触越来越多的实例而日趋改善。关于这个美妙的现象,辛顿淡定地说:“回想起来,(机器学习的成功)只是数据量和计算量的问题。”
1700550220
1700550221
辛顿可能过谦了。他对神经网络的多项进展都有贡献,其中一项甚至使研究领域改名。2006年,他与西蒙·奥辛德罗(Simon Osindero)和郑怀宇(Yee-Whye Teh)合作发表论文《一种深度信念网络的快速学习算法》,表明足够强大并适当配置的神经网络本质上可以自己学习,无须人类的培训或监督。例如,如果阅读了大量的手写数字,这些网络就可以正确地推断10个不同的数据类型(对应于数字0到9),然后还可以准确地对其读到的任何新的手写数字分类,归入其所确定的10个类别。
1700550222
1700550223
在机器学习领域,这种无人监督的学习仍相对少见。最成功的系统依赖于监督式学习,在其中,系统被输入一组问题和配对的正确答案,然后被要求自己回答任何新的问题。例如,某个机器学习系统可能被输入一大组人类演讲的语音文件和相应的书面文本文件。该系统使用这组配对数据来建立神经网络的内部关联,使其能够解释新的录音实例。由于监督和无监督的机器学习方法都使用辛顿及其同事在2006年论文中描述的算法,所以它们现在通常被统称为深度学习系统。
1700550224
1700550225
演示和部署
1700550226
1700550227
除了扬·乐坤建立的用于识别支票上手写数字的系统等少量案例,深度学习的商业应用其实只有几年,但是这种技术正在以超常的速度传播。谷歌负责该项技术的软件工程师杰夫·迪恩(Jeff Dean)[7]指出,截至2012年,该公司还压根儿没有用它来改进搜索、Gmail、YouTube及Google Maps等产品。然而到了2015年第三季度,深度学习已经用于公司大约1 200个项目之中,超过了其他方法的表现。
1700550228
1700550229
DeepMind在深度学习与另一种被称为“强化学习”的技术相结合方面特别有效,[8]它不仅将注意力和技术放到公司向客户提供的信息产品上,而且还应用于物理世界的关键过程。谷歌运行着一些世界上最大的数据中心,它们是非常耗能的设施。建筑物必须向多达10万台服务器供电,同时保持冷却。冷却方面的挑战更加复杂,因为设施的计算负载(服务器被要求工作的总量)因时而异,无法预测。室外的天气也有关系,它显然影响了建筑物的冷却方式及冷却程度。
1700550230
[
上一页 ]
[ :1.700550181e+09 ]
[
下一页 ]