打字猴:1.700636217e+09
1700636217 总之,细菌耐药机制日趋复杂,且耐药性常为多种机制并存。抗菌药物在医院、农场、社区滥用是抗菌药物耐药的主要原因。不当的抗菌药物的使用对细菌耐药产生筛选作用,使耐药菌株有更好的生存环境,导致耐药菌株的流行。因此应针对致病菌,合理选择抗菌药物、制定个体化给药方案具有重要意义。近来,循环使用抗菌药物的概念又重新活跃起来,其依据是恢复调节基因发生突变理论,有人推荐,在经验性治疗严重的全身感染时,β-内酰胺类抗生素应循环使用,即先用第三或第四代头孢菌素,然后停下来换用酶抑制剂复合制剂,再停下来换用碳青霉烯类抗生素,再回到使用第三或第四代头孢菌素,如此依次循环。美国芝加哥一所教学医院,由于医院制定了一套控制抗菌药物使用的对策,10年来,第三代头孢菌素一直保持了较高的抗菌活性,延迟了耐药性的发展。另外,需要对致病菌的耐药性进行监测,预测耐药细菌的流行情况。细菌对抗菌药物的耐药性可以是先天的或基因突变产生的,但引起耐药菌的流行主要是外源性获得耐药,如带有耐药基因的质粒或转座子在细菌之间的传递。质粒可以通过接合、转导、转化等在细菌间传播。含耐药基因的转座子带有转座酶、溶解酶及其抑制物基因,可以随机转位插入复制体或任一位置而导致细菌产生耐药性。因此,对于耐药细菌的感染,应注意严格执行消毒隔离制度,避免或减少医源性交叉感染。
1700636218
1700636219 【思考题】
1700636220
1700636221 1.试述常见细菌耐药机制。
1700636222
1700636223 参考文献
1700636224
1700636225 [1] Xia P, Feng P, Zhong L, et al. Accumulation of ciprofloxacin and lomefloxacinin fluoroquinolone-resistant strains of Escherichia coli. Chin Med J(Engl), 2002, 115(1):31-35.
1700636226
1700636227 [2] EI Amin N, Giske CG, Jalal S, et al. Carbapenem resistance mechanisms in pseudomonas aeruginosa: alterations of porin OprD and efflux proteins do not fully explain resistance patterns observed in clinical isolates. APMIS, 2005, 113(3):187-196.
1700636228
1700636229 [3] Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat, 2001, 4(2):106.
1700636230
1700636231 [4] Gniadkowski M. Evolution and epidemiology of extended-spectrum beta-lactamases(ESBLs)and ESBL-producing microorganisms. Clin Microbiol Infect, 2001, 7(11):597.
1700636232
1700636233 [5] Batchelor M, Hopkins KL, Threlfall EJ, et al. Characterization of AmpC-mediated resistance in clinical Salmonella isolates recovered from humans during the period 1992 to 2003 in England and Wales. J Clin Microbiol, 2005, 43(5):2261-2265.
1700636234
1700636235 [6] Rasmussen BA, Bush K. Carbapenem-hydrolyzing β-lactamases. Antimicrob Agents Chemother, 1997, 41(2):223-232.
1700636236
1700636237 [7] Bush K. Metallo-β-lactamases: A class apart. Clinical Infectious Diseases, 1998, 27(Suppl 1):s48-s53.
1700636238
1700636239 [8] Osano E, Arakawa Y, Wacharotayankun R, et al. Molecular characterization of an enterobacterial metallo-beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother, 1994, 38(1):71-78.
1700636240
1700636241 [9] Walsh TR, Toleman MA, Poirel L, et al. Metallo-β-lactamases: the quiet before the storm. Clin Microbiol Rev, 2005, 18(2):306-325.
1700636242
1700636243 [10] Toleman MA, Simm AM, Murphy TA, et al. Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America: report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother, 2002, 50(5):673-679.
1700636244
1700636245 [11] Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother, 2001, 45(2):583-588.
1700636246
1700636247 [12] Azucena E, Mobashery S. Aminoglycoside-modifying enzymes: mechanisms of catalytic processes and inhibition. Drug Resist Updat, 2001, 4(2):106.
1700636248
1700636249 [13] Sieradzki K, Markiewica Z. Mechanism of vancomycin resistance in methicillin resistant Staphylococcus aureus. Pol J Microbiol, 2004, 53(4):207-214.
1700636250
1700636251 [14] Jouaihia W, Ghozzi R, Kamoun A, et al. Infectious endocarditis caused by a glycopeptide-resistant enterococus. Tunis Med, 2000, 78(11):667-670.
1700636252
1700636253 [15] Shortridge BD, Flamm RK, Ramer N, et al. Novel mechanism of macrolide resistance in Streptococcus pneumoniae. Diagn Microbiol Infect Dis, 1996, 26(2):73-78.
1700636254
1700636255 [16] Yokoyama K, Doi Y, Yamane K, et al. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet, 2003, 362(9399):1888-1893.
1700636256
1700636257 [17] Galimand M, Courvalin P, Lambert T. Plasmid-mediated high level resistance to aminoglycosides in Enterobacteriaceae due to 16SrRNA methylation. Antimicrob Agents Chemother, 2003, 47(8):2565-2571.
1700636258
1700636259 [18] Doi Y, Yokoyama K, Yamane K, et al. Plasmid-mediated 16SrRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob Agents Chemother, 2004, 48(2):491-496.
1700636260
1700636261 [19] Wachino J, Yamane K, Shiba Yama K, et al. Novel plasmid-mediated 16S rRNA methylase, RmtC, found in a Proteus mirabilis isolate demonstrating extraordinary high level resistance against various aminoglycosides. Antimicrob Agents Chemother, 2006, 50(1):178-184.
1700636262
1700636263 [20] Yokoi S, Yasuda M, Ito S, et al. Uncommon occurrence of fluoroquinolone resistance-associated alterations in GyrA and ParC in clinical strains of Chlamydia trachomatis. J Infect Chemother, 2004, 10(5):262-267.
1700636264
1700636265 [21] Escribano I, Rodriguez JC, Royo G, et al. Mutations in the gyrA gene in Salmonella enterica clinical isolates with decreased ciprofloxacin susceptibility. Int J Antimicrob Agents, 2004, 24(3):300-303.
1700636266
[ 上一页 ]  [ :1.700636217e+09 ]  [ 下一页 ]