打字猴:1.70067832e+09
1700678320 计算脑的存储容量充满了概念和实践上的困难。脑的运作是自然的、进化的现象,脑不是数字设备。使用粗糙的(甚至是复杂的)信息概念无法完全理解脑。
1700678321
1700678322 更根本的问题是,脑和计算机的结构完全不同。2006年,在一本由23位顶尖神经科学家撰写的著作中,拉里·阿博特重点阐述了一些有待解决的问题(其中大部分问题至今仍未得到令人满意的回答)。[29] 在他撰写的文章《这东西的转换开关在哪儿?》(Where Are the Switches on This Thing?)中,阿博特探讨了电子设备的最基本组件——转换开关在脑中可能的生物物理对应物。尽管抑制性突触可以通过使下游神经元失去响应来改变神经活动的流动,但这种相互作用在脑中是相对较少的。细胞并不像二元转换开关那样可以开关,进而组成一个电路。相反,神经系统改变其运作模式的主要方式是改变细胞网络的活动模式,这些细胞网络由大量单元组成。正是这些网络来引导、切换和分流神经活动。这些网络的节点与我们目前能设想的任何设备的不同之处在于,它们不是像晶体管或电子管那样的稳定点,而是一组组的神经元(成百上千甚至成千上万之多)。这些神经元能作为一个网络随着时间的推移做出一致的响应,即便这些细胞会表现出不一致的行为。
1700678323
1700678324 在大型生物的脑中,理解脑功能所需的分析似乎越来越不应该停留在霍拉斯·巴洛“五法则”那样的细胞层面了,脑就像一台计算机甚至脑内有一张连线图的想法似乎也不再有效了。真实情况要比这复杂得多。
1700678325
1700678326
1700678327
1700678328
1700678329 对于那些通过结构基础(连接组或无论什么)来理解脑功能的理论,有一个更大的问题。如果我们把MOS 6507芯片及其相关组件想象成克里克提到的“外星科技”,想象成降落到地球的火星飞船上发现的一个设备,我们就能发现这个问题。通过对其组件的全面分析,我们会发现外部输入可能会改变它的功能,但我们似乎不太可能想象得到火星人会用这个设备来玩游戏。如果没有观察到火星人与这台机器的互动,我们永远不会完全理解它是如何工作的。如果没有这个决定性的外部因素,那么这个设备的意义和作用模式就会始终模糊不清。
1700678330
1700678331 当我们将这一见解延展到对脑的理解时,1997年发表的一篇文章的标题以惊人的方式点明了其关键含义——《脑有一个身体》(The Brain Has a Body)。[30] 身体处于环境之中,两者都会影响脑实现功能的方式。这似乎是显而易见的,但在试图理解脑的建模方法中,都没有包含身体和环境的要素。所有脑所处的生理现实是,从它们开始发育的那一刻起,它们就在与身体和外部环境相互作用。如果模型或者实验设置中不体现这些方面,那么获得的对脑的理解必然是不充分的。
1700678332
1700678333 模拟放在大缸中的脑(“人脑计划”本质上正是在这么做,不过只是涉及大鼠脑的一小片),令系统缺失了它需要的一个必不可少的组成部分——来自外部世界的输入。用奥拉夫·斯波恩斯的话来说:“神经元不只是被动地对输入做出反应,通过影响运动活动和行为,它们也在积极地决定输入的是什么。”[31] 我们在模拟或分离出的神经元网络中观察到的,有可能是一个无法正常运转的系统。将模拟研究的结果与活的动物的脑活动进行比较——就像在斑马鱼中所做的那样——将有助于我们弄清这一点。[32]
1700678334
1700678335 这种观点也打击了近来脑类器官(brain organoid)研究的一些令人兴奋的发现。脑类器官是在培养皿中用干细胞培养的一小团脑组织。研究人员发现,一些相应的脑细胞类型(包括小胶质细胞)在脑类器官中一致并可复制地出现。[33] 类器官中的神经元可以表现出有节律的行为,就像20世纪50年代那些粗陋的计算机模拟结果那样,甚至有人声称这些节律行为与早产儿神经元的活动很相似。在其他实验中,一个类器官上视网膜组织生长的区域会对光线有反应,而在另一些实验中,实验者甚至观察到脑类器官能与小鼠的脊髓结合到一起并引起肌肉的收缩。[34] 怪异之处在于,类器官的生长永远不会超出几毫米的大小,其细胞数目也不会超出约300万个(与人脑细胞的数目相比,这非常少),因为身体在与环境的互动中会产生无数可以引导脑发育的因子,而类器官的生长则欠缺这些因子的影响。
1700678336
1700678337 这些小扁豆大小的小团组织将为我们提供重要的见解,让我们了解简单的脑结构在健康和疾病情况下是如何发育的,以及它们是如何进化出来的。[35] 但有些人已经准备用脑类器官做一些不那么美妙的表演了。一位自作聪明的研究人员打算利用尼安德特人的基因组创造出脑类器官,将它们与“机器人螃蟹”连接起来,然后与由人脑类器官控制的“机器人螃蟹”进行比赛。[36] 这样的奇观并不能告诉我们什么。面对这种轻率的想法,科学家和生物伦理学家主张为类器官研究建立一个伦理框架,以阻止研究者在这些最新的科学事物上开展无意义或者具有潜在破坏性的实验。[37] 虽然一个类器官变得具有意识的可能性微乎其微,但我们很难知道该如何分辨真相。回想一下1874年可怜的玛丽·拉弗蒂的遭遇,审慎应该居于好奇和娱乐之前。
1700678338
1700678339 脑存在于身体这个环境中,牢记这一点非常重要,这可以从脑与肠道微生物相互作用的方式看出来。使用肠道内没有微生物的“无菌小鼠”开展的研究发现,这些小鼠脑中的5—羟色胺水平发生了变化,焦虑行为的水平也降低了。微生物和行为之间似乎不太可能有因果联系,但当正常的肠道微生物被引入“无菌小鼠”体内时,这种因果联系就显现出来了——上述两种结果被逆转了,这说明肠道中的微生物可以影响脑中生物化学过程的基本方面。[38]
1700678340
1700678341 许多科学家确实在采用一种综合的方法来理解脑。例如,在他们2018年出版的著作《情绪的神经科学》(The Neuroscience of Emotion )中,拉尔夫·阿道夫斯(Ralph Adolphs)和大卫·安德森(David Anderson)重点探讨了精神活动中一个最棘手也最有影响力,但又极少被触及的领域——情绪。阿道夫斯和安德森在书中引用了涵盖动物世界的很多研究结果,研究对象包括章鱼、果蝇和哺乳动物。他们探索了动物——甚至是那些被视作简单生物体的生物——的生理和心理状态是如何相互作用的。不管他们的理论是否坚实,我们得到的启示是,要想完全理解情绪,就必须在与外部世界互动的整个生命体中开展研究。[39] 神经科学家艾伦·贾萨诺夫(Alan Jasanoff)也提出了同样的看法。在他的著作《生物心智》(The Biological Mind )中,贾萨诺夫对他称为“大脑神秘性”(the cerebral mystique)的观点提出了批评。这种观点单纯地将人的心智活动还原为我们脑的活动,经常暗示我们的心智是漂浮在大规模神经元复合体中的幽灵。[40] 通过将脑置于其解剖、生理和进化背景下,我们可以更丰富地理解我们身体的各个部分是如何相互作用,进而产生我们的行为,并最终产生我们的心智的。这一点甚至扩展到了神经元功能领域。在他们的学术著作《神经设计原理》(Principles of Neural Design )中,彼得·斯特林(Peter Sterling)和西蒙·劳林(Simon Laughlin)强调了理解脑的基本构造法则的重要性,这些法则根植于生理学和生物能量学(bioenergetics),即使在最简单的脑中也是如此。[41]
1700678342
1700678343 在我们自身的精神体验中,我们能体会到身体的重要性,这也表明,那些认为人类心智并不位于头脑中而是位居身体其他部位的旧观念,也许并不像原来认为的那么大错特错。在一项研究中,芬兰的研究人员要求拥有不同文化和母语的受试者描述与情绪有关的身体感觉,以及不同感觉所在的物理位置。[42] 研究结果显得并不令人意外:躯干,更具体地说是心脏的位置,似乎与许多情绪有关,尤其是焦虑、骄傲、恐惧和愤怒;而所有的认知感受——思考、推理、记忆等等,则都集中在头部。我的猜测是,这种认为脑是思想中心的感受是现代知识(modern knowledge)的产物,而将某些情绪定位到我们身体的某个部位则是人体生物学的直接产物。
1700678344
1700678345
1700678346
1700678347
1700678348 对于理解脑的最佳前进道路,我个人的偏好是将资源投入到分散的、可执行的项目中,这些项目必须能提供可以被整合为一个更全面方法的深入见解。在我看来,克里克研究意识的方法适用于整个脑。理论物理学某些领域的经验表明,那些不植根于实验现实的雄心勃勃的想法或许足以让科学家兴奋不已并占据很多人的整个学术生涯,但并不一定能让我们的理解前进一步。通过发展分析技术和理论框架来理解一只果蝇在思考什么,我们将为理解更复杂的脑奠定基础。单单是努力去理解简单动物的脑,就足以让我们在本世纪余下的时间里忙个不停了。如果你觉得任何关于脑的研究都必须涉及脊椎动物才会真正有趣的话,那么斑马鱼微小的幼鱼只有10万个神经元的脑显然应该归入小型脑的范畴。
1700678349
1700678350 对人脑的成像研究,以及未来对神经元活动和神经元相互连接的更精确的全脑测量,可能确实会提供一些见解,但概念上的进步来自更简单的系统的可能性似乎更大。这并不是说所有关于脑及其功能的研究都应该遵循还原论,而是说在不同的物种中,如果结构和功能上有相似甚至相同的地方,那么在更简单的系统上发展出分析技术和方法学层面的技术会更加容易。这就是规模庞大的“人类基因组计划”(Human Genome Project)所使用的方法。这个计划从获取和分析简单生物(细菌、线虫和果蝇)的基因组为起点,然后将这些经验应用到人类的基因组上。无论是在技术上还是在概念上,这都比理解任何动物的脑要简单得多。
1700678351
1700678352 小型脑也使我们能够从两种历史的函数[43] 的角度来研究脑的结构。一个是动物的个体史——内部和外部的刺激影响了动物脑在胚胎和成年前的发育,并在此后继续改变它的活动,另一个则是物种的进化史。发育效应有助于解释个体间的差异,而物种间的比较研究则为一些根本性问题提供了见解。例如,果蝇有很多个物种,这些不同的种所处的生态位不同,并表现出了感觉系统结构和行为的差异。正如达尔文所预测的那样,这些差异将反映在脑的结构和功能上。对这些物种的比较,为我们提供了一个新的研究角度——探索个体史和进化史在理解脑功能方面的意义。[44] 这也将有助于我们解答一个棘手的问题——所有的脑是否都是同源的?换句话说,你、果蝇和章鱼的共同祖先是否有同一个脑?如果答案是肯定的,那么可以预期,所有动物都会有一些与脑功能相关的共同基因、结构和过程;如果答案是否定的,当我们对不同动物谱系的脑开展更细致的研究时,我们就有望发现它们之间的重要差异。
1700678353
1700678354 对昆虫、线虫、斑马鱼幼鱼和其他生物的脑的关注,并不意味着我们不能研究复杂的行为。2007年,当第一批对大量相关物种开展的基因组研究的结果公布时(其中有11种果蝇),我的朋友、美国神经科学家莱斯莉·沃斯霍尔(Leslie Vosshall)在《自然》杂志上发表了一篇文章,标题很吸引眼球——《进入一只果蝇的心智》(Into the Mind of a Fly)。她预测,比较基因组学使我们站在了一个全新研究领域的门槛上:
1700678355
1700678356 我们现在或许已经有能力研究果蝇更复杂的行为甚至情绪。在任何动物的遗传或功能层面上,这些行为的神经生物学基础都没有得到很好的阐释。这些行为包括:社会性、常识、利他主义、同理心、挫折、动机、仇恨、嫉妒、同侪压力等等。研究这些特性的唯一一个先天限制是,我们是否相信果蝇可以表达出这些情绪,以及我们能否设计出合理的行为范式来衡量它们。[45]
1700678357
1700678358 虽然当时我对此持怀疑态度,但这些年间,她的大胆预测得到了证实。CRISPR基因编辑技术的出现让我们可以改变能在实验室里饲养的任何动物的基因,这为我们提供了一个强大的新工具,让我们能够研究所谓“非模式生物”(换句话说,就是小鼠、果蝇和秀丽隐杆线虫之外的生物)[46] 的脑。正如发育生物学家尼帕姆·帕特尔(Nipam Patel)最近所说的那样:“进化已经解决了我们感兴趣的所有问题,我们只需要找到那些生物,并想办法询问它们是如何做到这一点的就行了。”[47]
1700678359
1700678360 目前我们已经知道,小型脑能产生与人类行为非常相似的行为,包括感知、学习、兴奋、犹豫不决、预测、预见、攻击性、个性和对疼痛的反应。[48] 它们甚至能帮助阐明人类存在的一个关键方面——本体感受和内感受(interoception)这一对感官。本体感受是我们对四肢所处位置的感觉(这使你能够在闭着眼睛的情况下用手指触摸到鼻子),而内感受则是我们存在于自己身体中的那种感觉。在人类中,内省活动告诉我们,我们的自我意识与这些感觉至少是部分地交织在一起的。果蝇知道自己有多大,它们会避免试图跨越它们那细小的腿无法跨越的空隙。这个知识是后天习得的,未经学习的果蝇往往会把腿伸得过长。很显然,它们以为自己的身体与蛆虫时期可伸展的身体是一样大的,但视觉反馈会使它们很快提高自己估计伸腿长短的能力。果蝇会将有关它们体形的记忆以长期记忆的形式储存起来,这些记忆被编码在一组已经被鉴定出的神经元的活动中,这些神经元位于它们脑的中心部位。[49] 如果我们能构想出恰当的实验来开展研究,那么这一现象背后的过程可能会为脑如何表征身体及其与外部世界的关系等更复杂的例子带来启发。
1700678361
1700678362 肯尼斯·克雷克认为,人脑是“一台能够模拟或并行处理外部事件的计算机器”,这一观点同样适用于小型脑——它们使动物能够解释环境中的事件并预测结果,虽然预测可能会很粗略。如果我们能够理解这些达尔文所谓的“最神奇的物质原子”,[50] 也就是说能在一系列的环境下预测它们的行为(无论是在整体水平上,还是在其组成部分和相互作用的水平上),那么我们就将朝着理解人类自己的脑迈出巨大的一步。一些科学家认为,这种方法甚至可能破解意识的古老起源,但就目前而言,单单是控制秀丽隐杆线虫的运动也证明远比我们预期的要复杂。[51] 在我们理解人类的意识是如何运作的之前,我们是否能够理解动物那微弱意识的神经生物学基础,我们仍无法确定。[52]
1700678363
1700678364 除了探索更复杂的、条件化的行为外,还有一种可能有效的方法:选择研究一种明显是完全由作用于内部感觉模板(sensory template)的外部因素所决定的行为(这种行为在个体之间显示出极少的差别或者完全没有差别),然后尝试理解控制这种行为的潜在神经网络。例如,在我特别喜欢的一篇1978年的科学论文中,论文作者安德鲁·史密斯(Andrew Smith)描述了一种澳大利亚独居的泥胡蜂建造它的巢穴入口的过程,入口从地面伸出,是一个弯曲的伞状“漏斗”。[53] 这种胡蜂是分阶段建造这个结构的。通过打碎这个结构的某些部分,或者在它周围垫高地面,史密斯揭示了导致胡蜂产生不同行为方式的关键感官刺激。
1700678365
1700678366 例如,如果看到一个洞,这种胡蜂就会开始建造一个垂直的“漏斗”。当胡蜂外出收集泥土时,如果史密斯在接近完成的结构顶部打一个洞,这只倒霉的胡蜂就会开始建造一个新的垂直“漏斗”,从而形成一个两层结构。在这种胡蜂的脑中,并没有最终结构的整体形象,只有在特定的刺激下,它才能完成下一步的动作。产生这种一成不变的行为的行为通路可以用一个简单的流程图来描述。在胡蜂脑中的某个地方,有与这些通路相对应的神经元。找到这些神经元并搞清楚它们是如何相互作用进而产生这种行为的,这必然是可以实现的。
1700678367
1700678368
1700678369
[ 上一页 ]  [ :1.70067832e+09 ]  [ 下一页 ]