1700679106
1700679107
这个例子提供了几条信息:首先,脑电图并不是直接记录了每个细胞的活动,虽然它能够呈现大脑的一些反应,但是在研究和分析脑电波时,有很多需要注意的地方。其次,脑电图展现的并不是几个神经细胞或是某一个大脑区域的活动,它记录的是整个大脑中的神经细胞的电流产生的电压波动。第三,虽然它在空间分辨率上非常吃亏(也就是说,它并不能精准地展示大脑的某个特定区域的活动),但它在时间分辨率上非常好(精准到毫秒,也就是基本实时记录)。
1700679108
1700679109
在临床上,常用脑电图来诊断癫痫,有时对神经疾病的诊断也有很重要的作用。
1700679110
1700679111
举一个简单的例子,假设我已经给你戴好脑电图帽子,开始记录你的脑电波,然后你听我念下面两个句子:
1700679112
1700679113
第一句话:一个男人在自己的咖啡里加了牛奶。
1700679114
1700679115
第二句话:一个男人在自己的咖啡里加了袜子。
1700679116
1700679117
当你听到“袜子”这个违反语境的词语后400毫秒的时候,与听到“牛奶”相比,脑电波会有一个更高的波峰。通过反复的测试,我们发现,这个波峰(实际上专业叫“成分”)和“违反语境”有关系,只要听到或看到违反语境的词语或物体,都能够在脑电波里看到这个“成分”。
1700679118
1700679119
收集脑电波不是一件难事,但是要解释脑电波需要一定的知识储备,所以这里我没办法深入介绍。
1700679120
1700679121
自从1924年的首次人类脑电图实验之后,脑电图基本上是发展得最成熟也最便宜的一种脑成像仪器了。虽然现在已经有比脑电图更精确好用的脑成像设备,但脑电图最大的优势是,它非常便宜。弄一套普通的EEG设备,只要5万美元左右。而每做一次实验,便宜的时候,差不多只花2~3美元。
1700679122
1700679123
因为它发展成熟又便宜,很多公司和实验室(包括我现在所在的实验室)在尝试将之使用在人机界面上,用脑电波来下达一些指令。或是结合眼动追踪技术,给穿戴型设备,如谷歌眼镜,提供一些实时反馈等等。
1700679124
1700679125
如果你对这个技术很感兴趣,想对它深入了解的话,我推荐一本很不错的入门教材:Luck, S.J.,2014.An Introduction to the Event-Related Potential Technique.MIT Press.(《项目相关潜在技术的简介》)
1700679126
1700679127
因为篇幅的问题,我只能稍微介绍一下脑电图和功能性核磁共振。这两个技术也是在平时看神经科学相关的科普文章中常提到的。实际上,在神经科学业界,对不同的脑成像技术也是褒贬不一。使用这些成像技术,所得到的实验结果到底有多少说服力,也是仁者见仁智者见智。
1700679128
1700679129
根据不同的研究目的,选择哪一种脑成像技术是非常重要的。脑成像实验的设计和分析也是有很多的弯弯绕绕,很难在科普环境下一一解释清楚。非常遗憾,但也不得不承认的是,有很多脑成像实验缺乏严谨性,使得漂亮的脑成像扫描图不仅不能解答任何问题,反而会引起媒体和公众的误解。所以,当你在媒体上看到脑成像实验的结果时,包括在阅读本书时,请务必时刻保持怀疑的态度。
1700679130
1700679131
1700679132
1700679133
1700679135
大脑使用指南:其实你活在大脑创造的虚拟世界里 没存在感的小脑
1700679136
1700679137
难易程度
1700679138
1700679139
当我们说到大脑的时候,往往会遗忘掉后脑勺的小脑。虽然它只占了全脑体积的10%,但其主要功能却一点都不能忽视:它负责肢体动作,包括姿势、平衡、运动学习(如挥高尔夫球杆)以及演讲。
1700679140
1700679141
一、小脑拥有全脑一半的神经细胞数量
1700679142
1700679143
在学习小脑的相关知识时,我们第一个会学到的冷知识就是:这个只占了全脑体积10%的小脑,拥有整个大脑近一半的神经细胞。为什么这么小的体积却有这么多神经细胞?
1700679144
1700679145
要知道,神经细胞也有很多种,形状各异、功能各异,在神经系统中的分布也各异。其中,颗粒细胞(granule cell)是最小的神经细胞之一,细胞体直径只有5~8微米,整个大脑的75%以上都是这种细胞,而小脑中的大部分神经细胞就是这种体积极小又极其密集的颗粒细胞,而且在小脑里的颗粒细胞是大脑中最小的神经细胞,可惜我们现在对这种细胞的功能还不是太了解。不过,很清楚的是,小脑里的颗粒细胞接收了来自小脑之外的最大的输入信号,也就是小脑苔状纤维(mossy fibre,顾名思义,密密麻麻的跟苔藓一样),而这些纤维的另一头来自四面八方,最主要的来自大脑皮层,其次来自脊髓。
1700679146
1700679147
1700679148
1700679149
1700679150
小脑皮层的分层结构图。小脑长得皱巴巴的,当把这些“皱纹”抚平,然后切开看横截面,在显微镜下,就会发现像是多层蛋糕一样,每个类型的细胞,从内向外按层排列。这个图展示了小脑的三层结构,包括最外的分子层、浦肯野细胞层以及颗粒细胞层,在这里最里面的白质没有完整画出。请注意,此图的每层厚度并非按精确比例画出,仅是粗略示意而已
1700679151
1700679152
颗粒细胞将来自一根苔状纤维的信号,分成200多条“频道”散布出去。这里要说回小脑的功能了,小脑负责对话、演讲、运动和学习,但它并不负责发出指令,它负责将大脑发出的命令分工下去,让肌肉接收到信息,再告诉大脑:“你的命令已经传达下去了,下一步是什么呢?”
1700679153
1700679154
打个比方,你见到一个漂亮妹子,想跟人家打个招呼,“Hi,美女”,并挥挥手。大脑做出决定后,来自左半脑的布洛卡区帮你产生了正确的打招呼用的语言和发音“Hi,美女”,而不是“爱,霉撸”,并将这个信息传递到了小脑,在小脑里再通过苔状纤维传递给了颗粒细胞,颗粒细胞将这个单一指令编译成了更为精细的任务。譬如说,嘴唇的哪个肌肉要动、舌头怎么卷起来、控制嘴巴的咬合要确保不会咬到舌头又不会口齿不清,啊,还有确保足够轻佻的尾音呢,还有别忘了挥手……当然,这个比喻并不准确,但希望能通过这个例子帮助你理解,为什么需要将一个简单的指令,分成那么多分支。但由于小脑里的颗粒细胞实在是太小太密集了,现在还很难在正常活动的动物的大脑中检测它们的信息传递情况,所以要知道它们如何解析复杂的运动信息的情况还需要一些时日。
1700679155
[
上一页 ]
[ :1.700679106e+09 ]
[
下一页 ]