1700847010
1700847011
BDNF和运动产生同步变化的事实,逐渐证明了 BDNF不仅对神经细胞的存活很重要,而且对神经细胞的生长(发出新的分支)也很重要,因此它对学习也很重要。艾罗·卡斯特伦和哥伦比亚大学坎德尔实验室的苏珊·帕特森(Susan Patterson)共同发现,通过让老鼠学习刺激长时程增强效应(LTP),它们脑内BDNF水平就会相应提高。研究者观察老鼠的大脑,发现缺乏BDNF的老鼠失去了LTP的能力;反之,直接把BDNF注射到老鼠大脑内,则能促进LTP。神经外科学家戈麦斯·皮尼利亚(Gomez Pinilla)曾是科特曼的博士后研究生,他证实,如果让老鼠大脑内的BDNF无法正常工作,那么水池中的老鼠就难以找到水下暗藏的平台而逃脱。这一切概括起来形成了“运动有助于大脑学习”的可靠证据。
1700847012
1700847013
“运动最显著的一个特征是,它能提高学习效率,但有时候人们在研究中会忽略这一点。所以我认为这绝对是一个非常棒的重要信息,”科特曼说,“因为它意味着,如果你身体健康,就能更有效地学习和工作。”
1700847014
1700847015
实际上,在2007年的一项人类研究中,德国研究人员发现,人们在运动后学习词汇的速度比运动前提高了20%,学习速度和BDNF水平有直接关系。同理,那些由于基因变异导致BDNF缺失的人,更有可能缺乏学习能力。没有优质的营养肥料,大脑就关闭了自身通往世界的大门。
1700847016
1700847017
1700847018
1700847019
1700847020
精神病学勉强接受了这个观点:运动可以创造一个有助于学习的环境,从而有助于改善我们的心理状态。不过科特曼的工作为证实“运动能够增强学习的细胞机器”打下了基础。BDNF为突触提供工具以接受、处理、关联、记住信息,并把它放入相关背景中加以理解。这并不意味着,跑1 600米就会让你变成天才。“仅仅靠注射BDNF绝不可能让你变得聪明,”科特曼指出,“学习时,你可以一种不同的方式作出反应,而反应的对象早已经存在了。”
1700847021
1700847022
毫无疑问,关键在于这样东西是什么。
1700847023
1700847024
1700847025
1700847026
1700847028
运动改造大脑 大脑真的会长大
1700847029
1700847030
现代神经科学之父拉蒙·卡哈尔(Ramón y Cajal)提出中枢神经系统由独立神经元组成,在被他称为“极化接合点”的地方完成交流,拉蒙因此获得了1906年的诺贝尔医学奖。推崇其观点的科学家提出学习与突触变化密切相关的理论,尽管这一理论受到赞扬,但大多数科学家却并不买账。直到1945年,加拿大麦吉尔大学(McGill University)的心理学家唐纳德·赫布(Donald Hebb)偶然中首次发现了可作为证据的迹象。那时实验室的规定很松散,赫布觉得带几只实验室老鼠回去给孩子做临时宠物可能是个不错的主意。结果,把老鼠重新带回实验室后,赫布发现,与关在笼子里的同类相比,这几只老鼠非常擅于学习测试。被孩子们抚摸和嬉戏的新奇体验以某种方式提高了它们的学习能力。赫布认为这种经历改变了它们的大脑。在备受赞誉的教科书《行为的组织:一种神经心理学的理论》(The Organization of Behavior:a Neuropsy Chological Theory)中,他把这种现象描述为“使用–依赖可塑性”(use-dependent plasticity),认为突触在学习的刺激下会重新进行自我调整。
1700847031
1700847032
赫布的工作与运动密不可分。因为至少就大脑而言,体育活动算是新奇的体验。20世纪60年代,加州大学伯克利分校的心理学家们把一种叫“环境优化”(environmental enrichment, EE)的实验模型作为测试“使用–依赖可塑性”的手段。这次,研究人员没有把老鼠带回家,而是在它们的笼子里放置了玩具、障碍物、隐藏的食物以及转轮。研究人员还把老鼠们聚集起来,以便它们能够社交和 玩耍。
1700847033
1700847034
然而实验并非完全是充满和平与爱心的,因为最终这些啮齿目动物的大脑是要被解剖的。实验表明,生活在一个有更多感官刺激和社会化刺激的环境中,老鼠的大脑结构和功能皆发生了改变。老鼠不仅能更好完成学习,相对那些住在空荡荡笼子里的同类,它们的大脑重量也重了许多。赫布对可塑性的定义并没有包括神经元的增生。神经学家威廉·格里诺(William Greenough)读研究生期间,对加州大学伯克利分校的研究有强烈的兴趣,他回忆道:“那时候,要是从生理学上提出,大脑确实可以通过某些经历而发生改变,那几乎就等于异端邪说。”
1700847035
1700847036
格里诺想对“环境优化”项目做个调查,却被一通警告而打消了那种念头。他回忆说:“我的导师斩钉截铁地对我说,如果你把那个研究作为毕业论文,那你肯定会四面楚歌。”随着加州大学伯克利分校的研究结果被不断复制,“运动影响大脑”的观点也有了立足之地。哈佛大学的一个小组也用类似的研究从反面证实:环境的缺失会使大脑萎缩。通过手术将猫的一只眼睛缝合起来并饲养一段时间后,研究人员发现它们的视觉皮层明显缩小。整个研究证实,用肌肉比喻大脑以及用进废退的观念是成立的。
1700847037
1700847038
这不但挑战了生物学和心理学长期各自为政的局面,而且“环境优化”的社会意义是完全不同的。加州大学伯克利分校的研究促成了“开端计划”(Head Start)的诞生。这是一项提供资金让贫困孩子进入幼儿园的美国联邦教育计划。为什么必须让贫困孩子离开空无一物的“笼子”?这个研究领域突然间备受欢迎,许多神经学家开始研究用不同的方法刺激大脑生长。
1700847039
1700847040
曾安心于在伊利诺伊州立大学舒舒服服做一名教员的格里诺重新回到这个研究领域。20世纪70年代早期,在一次具有重要影响力的研究中,他用一台电子显微镜展示了“环境优化”可以促使神经元生长出新的树突。学习、运动和社交活动刺激并引发了分支扩张,继而促进其上的突触形成更多的神经连接,而位于这些神经连接上的许多髓鞘也随之加厚,髓鞘可以使神经连接更有效地释放信号。
1700847041
1700847042
现在我们知道,这种增生需要BDNF。这种突触的改建对神经回路处理信息的能力产生了巨大影响,显然这是个好消息。这意味着,你有力量改变你的大脑,而且你要做的仅仅是穿上你的跑步鞋。
1700847043
1700847044
运动能为大脑制造替换零件,诱发神经新生
1700847045
1700847046
随着突触可塑性的概念渐渐受到神经科学领域的认可,一种关于增生的更为激进的观点逐渐变得可信。20世纪大部分时间里,科学界坚持信奉大脑是一个在青春期就完全发育成熟的硬件。也就是说,我们出生时的神经元就是我们将来拥有的全部。我们可以随心所欲地重新调整突触,但神经元只会损耗,而且毫无疑问,我们还会加速神经元的衰退。初中的生物老师可能会提出一个观点,这个观点会吓得你未到法定年龄就不敢饮酒,“现在,你给我记住:酒精会杀死脑细胞,而脑细胞是永远不会再生长的。”
1700847047
1700847048
1700847049
1700847050
1700847051
●神经新生(neurogenesis)
1700847052
1700847053
从神经元干细胞、祖细胞中再生神经元的过程。
1700847054
1700847055
你猜结果怎么样?它们真的又生长了——而且达到数千个。科学家逐渐学会了使用那些先进的成像仪器来观察大脑,他们找到了确凿的证据,并在1998年公布了一篇有巨大影响力的论文。这个证据来源于一份不可思议的原始资料。癌症患者有时需要注射一种染色剂,它会出现在增殖癌细胞里,便于跟踪癌细胞的扩散情况。观察那些捐献遗体的晚期癌症患者的大脑时,研究者发现他们的海马体也充满了染色标记,这证明神经元就像身体其他细胞一样,正在分裂和增殖——这个过程被称为“神经新生”(neurogenesis)。于是,科学界正式认定它为神经科学领域最大的发现之一。
1700847056
1700847057
曾经,从斯德哥尔摩到南加州,再到普林斯顿,神经学家们都争先恐后要找出我们的新生脑细胞到底有什么作用,因为它的意义是广泛而深远的,帕金森氏病(Parkinson’s)以及阿尔茨海默病之类的退行性疾病的根本病因便源于神经细胞的死亡和受损。老化本身就是一种细胞的死亡,然而我们突然认识到,至少在大脑某些区域中存在一个内部的对抗手段。或许一旦搞清如何快速启动神经新生,我们就能为大脑制造出替换零件。
1700847058
1700847059
那么这对健康的大脑来说又意味着什么呢?其中一条关于神经新生的线索来自山雀研究。山雀在每年春天会学习新的鸣叫声,而且在短期内,它们的海马体上也显示出新细胞的增生。这是巧合吗?新生的细胞暗示其在学习中起到的某种作用,但我们很难得到这类证据。就像突触的可塑性一样,“神经新生显然与我们和环境的相互作用有关,不仅仅在情感上,在认知上也有关系”。加州索尔克研究所(Salk Institute)的神经学家弗雷德·盖奇(Fred Gage)说:“设法弄明白神经新生到底有什么作用,这真的是一个有趣的难题。”1998年,瑞典人彼得·埃里克森(Peter Eriksson)领导了这个关键性研究,而盖奇是和他一起工作的研究人员之一。
[
上一页 ]
[ :1.70084701e+09 ]
[
下一页 ]