1700847037
1700847038
这不但挑战了生物学和心理学长期各自为政的局面,而且“环境优化”的社会意义是完全不同的。加州大学伯克利分校的研究促成了“开端计划”(Head Start)的诞生。这是一项提供资金让贫困孩子进入幼儿园的美国联邦教育计划。为什么必须让贫困孩子离开空无一物的“笼子”?这个研究领域突然间备受欢迎,许多神经学家开始研究用不同的方法刺激大脑生长。
1700847039
1700847040
曾安心于在伊利诺伊州立大学舒舒服服做一名教员的格里诺重新回到这个研究领域。20世纪70年代早期,在一次具有重要影响力的研究中,他用一台电子显微镜展示了“环境优化”可以促使神经元生长出新的树突。学习、运动和社交活动刺激并引发了分支扩张,继而促进其上的突触形成更多的神经连接,而位于这些神经连接上的许多髓鞘也随之加厚,髓鞘可以使神经连接更有效地释放信号。
1700847041
1700847042
现在我们知道,这种增生需要BDNF。这种突触的改建对神经回路处理信息的能力产生了巨大影响,显然这是个好消息。这意味着,你有力量改变你的大脑,而且你要做的仅仅是穿上你的跑步鞋。
1700847043
1700847044
运动能为大脑制造替换零件,诱发神经新生
1700847045
1700847046
随着突触可塑性的概念渐渐受到神经科学领域的认可,一种关于增生的更为激进的观点逐渐变得可信。20世纪大部分时间里,科学界坚持信奉大脑是一个在青春期就完全发育成熟的硬件。也就是说,我们出生时的神经元就是我们将来拥有的全部。我们可以随心所欲地重新调整突触,但神经元只会损耗,而且毫无疑问,我们还会加速神经元的衰退。初中的生物老师可能会提出一个观点,这个观点会吓得你未到法定年龄就不敢饮酒,“现在,你给我记住:酒精会杀死脑细胞,而脑细胞是永远不会再生长的。”
1700847047
1700847048
1700847049
1700847050
1700847051
●神经新生(neurogenesis)
1700847052
1700847053
从神经元干细胞、祖细胞中再生神经元的过程。
1700847054
1700847055
你猜结果怎么样?它们真的又生长了——而且达到数千个。科学家逐渐学会了使用那些先进的成像仪器来观察大脑,他们找到了确凿的证据,并在1998年公布了一篇有巨大影响力的论文。这个证据来源于一份不可思议的原始资料。癌症患者有时需要注射一种染色剂,它会出现在增殖癌细胞里,便于跟踪癌细胞的扩散情况。观察那些捐献遗体的晚期癌症患者的大脑时,研究者发现他们的海马体也充满了染色标记,这证明神经元就像身体其他细胞一样,正在分裂和增殖——这个过程被称为“神经新生”(neurogenesis)。于是,科学界正式认定它为神经科学领域最大的发现之一。
1700847056
1700847057
曾经,从斯德哥尔摩到南加州,再到普林斯顿,神经学家们都争先恐后要找出我们的新生脑细胞到底有什么作用,因为它的意义是广泛而深远的,帕金森氏病(Parkinson’s)以及阿尔茨海默病之类的退行性疾病的根本病因便源于神经细胞的死亡和受损。老化本身就是一种细胞的死亡,然而我们突然认识到,至少在大脑某些区域中存在一个内部的对抗手段。或许一旦搞清如何快速启动神经新生,我们就能为大脑制造出替换零件。
1700847058
1700847059
那么这对健康的大脑来说又意味着什么呢?其中一条关于神经新生的线索来自山雀研究。山雀在每年春天会学习新的鸣叫声,而且在短期内,它们的海马体上也显示出新细胞的增生。这是巧合吗?新生的细胞暗示其在学习中起到的某种作用,但我们很难得到这类证据。就像突触的可塑性一样,“神经新生显然与我们和环境的相互作用有关,不仅仅在情感上,在认知上也有关系”。加州索尔克研究所(Salk Institute)的神经学家弗雷德·盖奇(Fred Gage)说:“设法弄明白神经新生到底有什么作用,这真的是一个有趣的难题。”1998年,瑞典人彼得·埃里克森(Peter Eriksson)领导了这个关键性研究,而盖奇是和他一起工作的研究人员之一。
1700847060
1700847061
新生的神经元是完全空白的干细胞(stem cell),要经历一个发育过程才能形成神经细胞。在这个过程中,它们必须找到事情做才能生存下来,但大多数都没有成功。一个新生的细胞要经过28天才能加入到一个神经网络中。和已经存在的神经元一样,赫布关于活动依赖性学习的概念将得到应用:如果我们不使用新生的神经元,我们就会失去它们。盖奇重新运用环境优化模型在啮齿目动物身上验证了这个观点。“开始进行这个实验时,我们必须要同时处理各种各样的问题。”盖奇说,“我们需要耍手段得到实验结果,但令我们吃惊的是,仅仅在笼子里放一个转轮,就能对新生神经细胞的数量产生显著影响。而讽刺的是,跑步组的神经细胞死亡率和对照组一样,所不同的仅仅是前者的细胞储备库比较雄厚而已。一个神经细胞要生存并加入到神经系统中,就必须生长出它的轴突。”运动产生大量神经元,而环境优化的刺激则有助于神经元的存活。
1700847062
1700847063
1700847064
1700847065
1700847066
第一个在神经新生与学习之间建立明确关联的人是盖奇的同事汉丽埃塔·冯·布拉格(Henrietta van Praag)。他们在一个水池中装满不透明的水,水面刚刚淹没水池角落里的平台。老鼠不喜欢水,研究者用实验来测试它们对平台的斜坡,即逃生路线的记忆程度如何。研究者比较了不运动的老鼠和每晚在转轮上跑4~5公里的老鼠,结果显示,运动的老鼠记住了在哪里能迅速找到安全地带。虽然两组老鼠的游泳速度相同,但运动的老鼠能径直朝平台游去,而不运动的老鼠则在水中四处乱撞后才找到平台。研究者解剖老鼠后发现,运动的老鼠海马体中新干细胞的数量是不运动的老鼠的两倍。总结实验结果时,盖奇说:“细胞总数和一只老鼠进行复杂任务的能力之间有显著关系。一旦阻碍神经新生,老鼠就无法回忆信息。”
1700847067
1700847068
虽然整个研究的对象是啮齿目动物,但我们知道实验可能与内珀维尔校区的体育课有一定的关联:体育课为大脑提供学习所需的最佳工具,而课堂上的学习刺激又促使那些新生的神经细胞连接到神经网络中。只有在那里,它们才能成为信号传递系统中的重要成员。神经元被赋予一个使命,通过运动更好地激发LTP,似乎就会新生出大量的神经细胞,它们都是可塑之材。普林斯顿大学的神经学家伊丽莎白·古尔德(Elizabeth Gould)由此联想到,也许新生神经元在保存我们的有意识思维方面起到了重要作用,而前额叶皮层则决定是否要把这些新神经元连接起来作为一个长期记忆。古尔德是首位证实灵长目动物长出新神经元的研究者,她的研究成果为人类神经新生的实验创造了条件。
1700847069
1700847070
她和神经科学领域的其他学者一样,还在分析神经新生和学习之间的关系,而运动已经成为一个重要的实验工具。不过有趣的是,很少有科学家会因为对运动感兴趣而去研究它,正如2006年公布的一份关于海马体研究的文章标题所说,他们之所以喜欢让老鼠跑步,是因为运动能“大大增加神经新生”,因此可以让研究人员分析这一过程背后的一系列信号。这也是制药公司制造药物所必需的,他们一直梦想有一种治疗老年痴呆症的药丸,能复活神经元以保存完整的记忆。最近,哥伦比亚大学的神经学家斯科特·斯莫尔(Scott Small)在以人为对象的研究中,利用核磁共振成像技术(MRI)跟踪拍摄神经新生现象。他说:“海马体里肯定有某种感知运动和语言的化学物质,好吧,让我们开始快速制造新细胞吧!如果我们确定了那些分子途径,也许我们就能想出聪明的办法,从生化学角度诱导神经新生。”
1700847071
1700847072
试想一下要是他们把运动装进一个瓶子里,会怎样呢?
1700847073
1700847074
1700847075
1700847076
1700847078
运动改造大脑 锻炼身体的同时,也在锻炼大脑
1700847079
1700847080
如果人类打算生产新的神经细胞,那么我们还需要营养它们的肥料吗?从一开始,研究神经新生的科学家就很熟悉BDNF。这些科学家早已明白如果没有这种优质的营养肥料,大脑就无法接收新信息,而现在人们又知道BDNF是制造新细胞必不可少的成分。
1700847081
1700847082
BDNF聚集在突触附近的储备库中,随着血液的泵出而被释放出来。在这一过程中,身体内大量激素被调动起来发挥协同作用,由此科学家带给我们一串新的缩写词:IGF-1(胰岛素样生长因子-1)、VEGF(血管内皮生长因子)以及FGF-2(成纤维细胞生长因子-2)。在运动期间,这些因子成功穿过血脑屏障(blood-brain barrier)(血脑屏障是一种由细胞紧密相连构成的毛细血管网,它可以阻挡类似细菌的大型侵入者进入大脑。)近年来,科学家刚刚认识到,一旦进入大脑后,这些因子和BDNF共同发挥作用,为学习的分子机器做好准备,尤其在运动的时候,大脑内部也会产生这些因子来促进干细胞分化,而更重要的在于这些因子描绘出身体到大脑的直接连接路线。
1700847083
1700847084
在运动过程中,当肌肉感觉需要更多能量时,它们就释放IGF-1因子。葡萄糖不仅是肌肉的主要能量来源,更是大脑唯一的能量来源。IGF-1与胰岛素共同合作把葡萄糖输送到你的细胞里。有趣的是,IGF-1在大脑中的作用与能量控制无关,而是与学习有关,这样我们就能记住在自然环境中哪里能找到食物。运动时,BDNF不但帮助大脑增加IGF-1含量,而且还激活神经元产生发送信号的神经递质,比如血清素和谷氨酸盐。它还会刺激更多BDNF受体的产生,增强神经元之间的联系以巩固记忆。特别是BDNF,它似乎对建立长期记忆很重要。
1700847085
1700847086
从进化角度看,这完全符合进化的道理。如果排除其他一切因素,那么我们需要的学习能力只是为了帮助我们找到、获得并储存食物。我们需要能量来学习,我们需要学会发现能量的来源——身体发出的所有信息都是为了让这个过程延续下去,并且让我们不断适应环境生存下来。
[
上一页 ]
[ :1.700847037e+09 ]
[
下一页 ]