打字猴:1.700847058e+09
1700847058
1700847059 那么这对健康的大脑来说又意味着什么呢?其中一条关于神经新生的线索来自山雀研究。山雀在每年春天会学习新的鸣叫声,而且在短期内,它们的海马体上也显示出新细胞的增生。这是巧合吗?新生的细胞暗示其在学习中起到的某种作用,但我们很难得到这类证据。就像突触的可塑性一样,“神经新生显然与我们和环境的相互作用有关,不仅仅在情感上,在认知上也有关系”。加州索尔克研究所(Salk Institute)的神经学家弗雷德·盖奇(Fred Gage)说:“设法弄明白神经新生到底有什么作用,这真的是一个有趣的难题。”1998年,瑞典人彼得·埃里克森(Peter Eriksson)领导了这个关键性研究,而盖奇是和他一起工作的研究人员之一。
1700847060
1700847061 新生的神经元是完全空白的干细胞(stem cell),要经历一个发育过程才能形成神经细胞。在这个过程中,它们必须找到事情做才能生存下来,但大多数都没有成功。一个新生的细胞要经过28天才能加入到一个神经网络中。和已经存在的神经元一样,赫布关于活动依赖性学习的概念将得到应用:如果我们不使用新生的神经元,我们就会失去它们。盖奇重新运用环境优化模型在啮齿目动物身上验证了这个观点。“开始进行这个实验时,我们必须要同时处理各种各样的问题。”盖奇说,“我们需要耍手段得到实验结果,但令我们吃惊的是,仅仅在笼子里放一个转轮,就能对新生神经细胞的数量产生显著影响。而讽刺的是,跑步组的神经细胞死亡率和对照组一样,所不同的仅仅是前者的细胞储备库比较雄厚而已。一个神经细胞要生存并加入到神经系统中,就必须生长出它的轴突。”运动产生大量神经元,而环境优化的刺激则有助于神经元的存活。
1700847062
1700847063
1700847064
1700847065
1700847066 第一个在神经新生与学习之间建立明确关联的人是盖奇的同事汉丽埃塔·冯·布拉格(Henrietta van Praag)。他们在一个水池中装满不透明的水,水面刚刚淹没水池角落里的平台。老鼠不喜欢水,研究者用实验来测试它们对平台的斜坡,即逃生路线的记忆程度如何。研究者比较了不运动的老鼠和每晚在转轮上跑4~5公里的老鼠,结果显示,运动的老鼠记住了在哪里能迅速找到安全地带。虽然两组老鼠的游泳速度相同,但运动的老鼠能径直朝平台游去,而不运动的老鼠则在水中四处乱撞后才找到平台。研究者解剖老鼠后发现,运动的老鼠海马体中新干细胞的数量是不运动的老鼠的两倍。总结实验结果时,盖奇说:“细胞总数和一只老鼠进行复杂任务的能力之间有显著关系。一旦阻碍神经新生,老鼠就无法回忆信息。”
1700847067
1700847068 虽然整个研究的对象是啮齿目动物,但我们知道实验可能与内珀维尔校区的体育课有一定的关联:体育课为大脑提供学习所需的最佳工具,而课堂上的学习刺激又促使那些新生的神经细胞连接到神经网络中。只有在那里,它们才能成为信号传递系统中的重要成员。神经元被赋予一个使命,通过运动更好地激发LTP,似乎就会新生出大量的神经细胞,它们都是可塑之材。普林斯顿大学的神经学家伊丽莎白·古尔德(Elizabeth Gould)由此联想到,也许新生神经元在保存我们的有意识思维方面起到了重要作用,而前额叶皮层则决定是否要把这些新神经元连接起来作为一个长期记忆。古尔德是首位证实灵长目动物长出新神经元的研究者,她的研究成果为人类神经新生的实验创造了条件。
1700847069
1700847070 她和神经科学领域的其他学者一样,还在分析神经新生和学习之间的关系,而运动已经成为一个重要的实验工具。不过有趣的是,很少有科学家会因为对运动感兴趣而去研究它,正如2006年公布的一份关于海马体研究的文章标题所说,他们之所以喜欢让老鼠跑步,是因为运动能“大大增加神经新生”,因此可以让研究人员分析这一过程背后的一系列信号。这也是制药公司制造药物所必需的,他们一直梦想有一种治疗老年痴呆症的药丸,能复活神经元以保存完整的记忆。最近,哥伦比亚大学的神经学家斯科特·斯莫尔(Scott Small)在以人为对象的研究中,利用核磁共振成像技术(MRI)跟踪拍摄神经新生现象。他说:“海马体里肯定有某种感知运动和语言的化学物质,好吧,让我们开始快速制造新细胞吧!如果我们确定了那些分子途径,也许我们就能想出聪明的办法,从生化学角度诱导神经新生。”
1700847071
1700847072 试想一下要是他们把运动装进一个瓶子里,会怎样呢?
1700847073
1700847074
1700847075
1700847076
1700847077 运动改造大脑 [:1700846414]
1700847078 运动改造大脑 锻炼身体的同时,也在锻炼大脑
1700847079
1700847080 如果人类打算生产新的神经细胞,那么我们还需要营养它们的肥料吗?从一开始,研究神经新生的科学家就很熟悉BDNF。这些科学家早已明白如果没有这种优质的营养肥料,大脑就无法接收新信息,而现在人们又知道BDNF是制造新细胞必不可少的成分。
1700847081
1700847082 BDNF聚集在突触附近的储备库中,随着血液的泵出而被释放出来。在这一过程中,身体内大量激素被调动起来发挥协同作用,由此科学家带给我们一串新的缩写词:IGF-1(胰岛素样生长因子-1)、VEGF(血管内皮生长因子)以及FGF-2(成纤维细胞生长因子-2)。在运动期间,这些因子成功穿过血脑屏障(blood-brain barrier)(血脑屏障是一种由细胞紧密相连构成的毛细血管网,它可以阻挡类似细菌的大型侵入者进入大脑。)近年来,科学家刚刚认识到,一旦进入大脑后,这些因子和BDNF共同发挥作用,为学习的分子机器做好准备,尤其在运动的时候,大脑内部也会产生这些因子来促进干细胞分化,而更重要的在于这些因子描绘出身体到大脑的直接连接路线。
1700847083
1700847084 在运动过程中,当肌肉感觉需要更多能量时,它们就释放IGF-1因子。葡萄糖不仅是肌肉的主要能量来源,更是大脑唯一的能量来源。IGF-1与胰岛素共同合作把葡萄糖输送到你的细胞里。有趣的是,IGF-1在大脑中的作用与能量控制无关,而是与学习有关,这样我们就能记住在自然环境中哪里能找到食物。运动时,BDNF不但帮助大脑增加IGF-1含量,而且还激活神经元产生发送信号的神经递质,比如血清素和谷氨酸盐。它还会刺激更多BDNF受体的产生,增强神经元之间的联系以巩固记忆。特别是BDNF,它似乎对建立长期记忆很重要。
1700847085
1700847086 从进化角度看,这完全符合进化的道理。如果排除其他一切因素,那么我们需要的学习能力只是为了帮助我们找到、获得并储存食物。我们需要能量来学习,我们需要学会发现能量的来源——身体发出的所有信息都是为了让这个过程延续下去,并且让我们不断适应环境生存下来。
1700847087
1700847088 为了向细胞输送能量,我们需要新的血管。当我们的身体细胞缺氧时,就会像肌肉运动缺氧所做的那样:VEGF开始工作,在身体和大脑中生成更多的毛细血管。研究者推测,对神经新生至关重要的一点是,VEGF改变了血脑屏障的可渗透性,即在运动期间,打开原来的血脑屏障,让其他的因子通过。
1700847089
1700847090
1700847091
1700847092
1700847093 ●胰岛素样生长因子(IGF-1)
1700847094
1700847095 IGF-1 也被称作“促生长因子”,是一种在分子结构上与胰岛素类似的多肽蛋白物质。在婴儿的生长和在 成人体内持续进行合成代谢作用上具有重要意义。
1700847096
1700847097 我们体内另一个重要成分——FGF-2也进入到大脑内。就像IGF-1和VEGF一样,在运动期间,FGF-2的数量也有增加,而且它是神经新生所必需的因子。FGF-2在身体内帮助组织生长,而进入到大脑后,它对LTP的过程起到重要作用。
1700847098
1700847099
1700847100
1700847101
1700847102 ●成纤维细胞生长因子(FGF-2)
1700847103
1700847104 由垂体和下丘脑分泌的多肽。能促进成纤维细胞有丝分裂、中胚层细胞的生长,还可刺激血管形成,在创伤愈合及肢体再生中发挥作用。
1700847105
1700847106 随着年龄的增长,这三种因子和BDNF的数量都会逐渐减少,而神经新生也随之减少。甚至在我们衰老之前,这些因子和神经新生数量的减少都会体现在紧张和抑郁上,随后我会在书中介绍这些内容。对我而言,这实在是鼓舞人心的消息。如果能提高身体内的BDNF、IGF-1、VEGF和FGF-2水平,就意味着我们掌握了某种方法控制老化。
1700847107
[ 上一页 ]  [ :1.700847058e+09 ]  [ 下一页 ]