1700878561
1700878562
要同时检验物理定律的假设和初始条件的假设,极大地减弱了观测的检验能力。如果我们的预言与观测不符,就存在两种更正办法:我们可以换个物理定律,也可以换个初始条件。这两个办法都能影响实验观测的结果。
1700878563
1700878564
这引发了新的问题,到底应该更改物理定律的假设,还是初始条件的假设?如果我们观测星系、恒星等宇宙局部系统,我们可以通过检验许多局部系统而将检验限定于物理定律之上。同样的局部系统应受同样的物理定律管辖。如果这些系统之间有所不同,那必定源自它们不同的初始条件。可我们只有一个宇宙,因而我们无法区分哪些效应由物理定律的改变引发,哪些由初始条件的改变引发。
1700878565
1700878566
有时,宇宙学研究确实遭遇了这样的问题。对于早期宇宙理论来说,一个重要的测试来自宇宙微波背景辐射(CMB)。它是早期宇宙遗留下的辐射,使得我们可以一窥大爆炸后40万年时宇宙的情形。在早期宇宙理论中,“暴胀”得到了广泛的研究,即早期宇宙所经历的巨大而快速的膨胀。暴胀稀释了宇宙的初始特征,将它变成我们所见的庞大却又处处几乎相同的宇宙。暴胀预测了宇宙微波背景的特定模式。它的预言和我们的观测结果非常相似。
1700878567
1700878568
数年之前,研究人员声称发现了微波背景辐射的一个新特征:非高斯性。这超出了普通暴胀理论的预言。[3](在此我跳过非高斯性的定义;我们仅需知道,这一特征可能确实存在于宇宙背景辐射之中,而标准的暴胀模型预言它不会出现。)要想解释观测,我们面临两个选项:我们可以修改理论,也可以修改初始条件。
1700878569
1700878570
暴胀理论也属于牛顿范式,所以它的预言也取决于理论的初始条件。
1700878571
1700878572
在非高斯性的观测文章发表几天之后,就有许多人撰写论文试图解释这一观测结果。有些人改了理论,有些人改了初始条件。所有这些尝试都成功预测了观测结果。事实上,人们早就知道两种方案都管用。[4]和许多前沿的观测科学一样,进一步观测否定了最初的高斯性观测。直至本书成文之时,我们还是不知道微波背景辐射之中到底有没有非高斯性。[5]
1700878573
1700878574
在以上例子中,我们展示了让理论符合数据的两种不同方法。如果是一些参数决定了物理定律和初始条件,那么肯定有两个不同的参数都可以让理论与观测相符。观测人员称这种情况为“简并”(degeneracy)。当简并发生时,通常我们需要引入新的观测并重新做拟合,才能区分二者。但宇宙背景辐射是这个宇宙仅发生过一次的事件的余晖。面对这类观测时,或许我们永远无法破除简并。鉴于目前我们对宇宙背景辐射的测量已经达到相当高的精度,这或许意味着我们真的无法回答到底是应该改变物理定律,还是应该改变初始条件。[6]但是,无法区分物理定律和初始条件各自的效应,意味着牛顿范式在解释自然现象成因时并不是那么有效。
1700878575
1700878577
只是近似
1700878578
1700878579
自牛顿时代以来一直指导着物理学发展的方法论,在我们看来已经江河日下。此前,我们认为牛顿力学或量子力学之类的理论,最有可能成为真正的终极物理理论。我们认为,如果它们确实是终极物理理论,它们将成为自然世界的完美镜像,每一个自然世界中的真实存在必然对应于一个理论世界中的数学事实。不含时间的物理定律作用于不含时间的位形空间,这一架构是牛顿范式的基础。也正因为此,牛顿范式对于上述的镜像过程不可或缺。在我看来,一旦我们将牛顿范式应用于整个宇宙,上述镜像真就是镜花水月了,它注定将会导致我们之前谈过的种种困惑与困局。为了验证我的观点,不妨让我们为牛顿范式中的各个理论做一次重新评估。这次评估将包括可能的终极物理理论,也将包括一些亚宇宙系统的近似描述。一些物理学家已经开始了这一评估过程。这次重新评估基于两个相互有联系的观念转变:
1700878580
1700878581
●包括广义相对论和粒子物理学标准模型在内的所有理论都是近似理论。它们只适用于自然世界的局部,只能描述宇宙自由度空间中的一个子集。我们称这些近似理论为“有效理论”(effective theory)。
1700878582
1700878583
●所有实验与观测都涉及如何截取自然世界中的局部。我们记录某个自由度子集的数据,并忽略其他自由度。然后,我们将这些观测数据与有效理论的预言进行对比。
1700878584
1700878585
1700878586
1700878587
1700878588
1700878589
1700878590
如此看来,物理学迄今为止的成功,完全是因为它在通过有效理论研究截断过的自然世界。实验物理学的艺术正在于如何巧妙地设计实验,将一部分有待研究的自由度从宇宙中隔离出来;而理论物理学家则针对实验物理学家研究的自然世界的局部,通过有效理论对其建模。我认为,一个真正的终极物理理论不可能是有效理论。纵观整个物理学史,我们从未让可能的终极物理理论作出预言,再与实验进行对比。
1700878591
1700878593
实验物理学研究的是自然界的局部
1700878594
1700878595
在亚宇宙系统建模过程中,我们忽略了子系统外的一切事物,好像宇宙中就这个子系统存在,我们称这样的系统为“孤立系统”(isolated systems)。但是,我们不应该忘记,完全孤立并不存在。正如之前我们提到的,在真实世界中,子系统与外界事物间总是存在着相互作用。从各种意义上讲,亚宇宙系统本质上是物理学家所谓的“开放系统”(open systems)。这类系统都有边界,边界内的事物与边界外的事物互动。因此,当进行盒中物理学研究时,我们将开放系统近似为孤立系统。
1700878596
1700878597
实验物理学家花费了大量精力将开放系统改造为(近似的)孤立系统。这类改造并不完美。一方面,当对系统进行测量时,我们影响了系统。(对于量子力学诠释来说,这是个大问题;现在让我们将关注的焦点放在宏观世界。)对每一个实验来说,并不完美的孤立系统总是或多或少地受到外界噪声的影响。实验物理学家费劲全力,试图从噪声中提取需要的数据。他们还要花费大量精力说服同行和自己:他们确实将噪声降到了最低,并从中看到了信号。
1700878598
1700878599
外部环境中的振动、辐射以及活跃其中的各种场,可能污染我们的实验系统,我们必须将它们隔离。对许多实验来说,能做到这一步已经足够了。对某些非常敏感的实验来说,落入探测器的宇宙射线可能对实验结果产生影响。为了屏蔽宇宙射线,这些实验的实验室通常架设在地表数公里之下的矿井中。太阳中微子的发现,就属于这类实验。太阳中微子实验将其他所有背景噪声降至可控水平,只让中微子通过。但我们目前尚未发现能够屏蔽中微子的方法。在南极的冰立方实验中,深埋于冰层下的探测器记录到了自北极而来的中微子。这些中微子纵贯了整个地球。
1700878600
1700878601
或许你确实可以建造一座星际尺度的厚墙来屏蔽中微子,但仍然有一种东西能轻松地穿过这道屏障,这便是引力。从理论上来说,没有东西可以屏蔽引力,也没有什么可以阻止引力波的传播。因此,完美的孤立系统不可能存在。我在攻读博士期间发现了这个重要观点。当时,我想设计一个盒子,让引力波在其中来回震荡。可引力波总能穿透盒子的壁,我的尝试屡屡失败。为了反射引力波,我便想象不断增加壁的密度。但在我达到所需密度之前,致密的壁就已经坍缩成了黑洞。我反复思量,试图寻找其他办法,最终却一无所获。我意识到这道我无法跨越的障碍本身就是个有趣的发现,甚至比我最初的设想要有趣得多。经过更为缜密的思考,我借由几个简单的假设证明,不存在可以屏蔽引力波的厚墙壁。[7]这一结论对任何材质、任意厚度的墙壁都成立。证明过程中我所用的假设就只有两条:一是在广义相对论中,物质所含的能量总是为正;二是声速总是小于光速。
1700878602
1700878603
以上论述表明,无论是从原则上来说还是从实际操作中来说,自然界中的系统都无法摆脱系统外宇宙的影响。这一结论非常重要,值得上升为一个原则,就让我们称它为“孤立系统的不存在性”(principle of no isolated systems)。
1700878604
1700878605
还有一个原因使我们相信,所谓孤立系统仅仅是开放系统的近似:我们无法预期针对系统的随机破坏性干扰。我们可以预期噪声、测量噪声、降低噪声,但外部世界对系统的破坏可能比噪声要糟得多:坠毁的飞机可能撞进实验室,地震可能震倒实验室,小行星可能撞击地球,地球可能被一片飘过的暗物质云拉向太阳,[8]地下室的电闸可能发生意外导致整个实验室断电……在这个庞大的宇宙中,能破坏实验进程的突发事件不计其数。当我们设计实验,并将其作为孤立系统考虑时,实际上是将以上可能全部排除掉了。
1700878606
1700878607
想要把这种种可以摧毁实验室的外部因素一并考虑在内,我们需要对宇宙整体进行建模。在实际建模或计算过程中,我们肯定不会去考虑这些可能性,否则我们什么研究都做不了。而不去考虑这些可能性,原则上就意味着我们的物理构建于某种近似之上。
1700878608
1700878610
有效理论本质上是近似理论
[
上一页 ]
[ :1.700878561e+09 ]
[
下一页 ]