打字猴:1.700902505e+09
1700902505 不过,在引力作用与电磁作用之间,确乎存在着好几种实质性的、重要的区别。与电磁力相比,引力极其微弱。例如,使铁钉落向地面需要整个地球的引力,而一个儿童玩具磁铁便可轻易克服这引力而吸起铁钉。因为电子与原子核都带有电荷,而且作用于单个原子的引力又微弱得可以忽略,因而原子间主要的相互作用便是电磁作用。因此,是电磁力使阁下得以浑然一体,且使阁下筋脉舒张。你从桌上拿起一个苹果,那是你肌肉中的电磁作用力克服了苹果与整个地球之间的引力作用。承蒙电磁作用,阁下的的确确是具有超越行星引力的力量。
1700902506
1700902507 然而,引力尽管微弱,其作用距离却很远。太阳与行星间的相互作用力使得行星沿轨道运动,同样,太阳本身也是一个由上千亿颗恒星组成的碟形星系的一部分,这一系统直径差不多有十几万光年,依靠引力维持而围绕中心旋转。原则上,电磁作用力的作用距离也较远。但是,电磁力与引力的另一个区别就是他们的作用方式各异,并会彼此抵消。在原子中,原子核的正电荷被电子的负电荷抵消,因此,从比原子的规格更大一些的范围看,原子似乎是电中性的,没有额外电荷。同样,北磁极总是与南磁极相对,而且尽管像太阳与地球等天体磁场确实在空间中有一定程度的延伸,但在整个宇宙范围并不存在将天体拉近或推离的多余磁力。
1700902508
1700902509 这便是电磁力相区别于引力的另一方面。引力总在吸引。我们早在孩提时代试图将两块同极性的磁体对在一起时,便已经发现了同极相斥、异极相吸的这一奥妙。因而,即便在物理学家们试图探索量子领域之前,他们就知道相互作用(力)的作用距离大小不一,它们与各种不同的电荷相联系,或相互吸引,或相互排斥。更为蹊跷的是,我们发现,相互作用对不同物质的影响方式并不相同。引力似乎无所不在,并作用于一切。但是,电和磁作用力仅仅作用于某几种物体。这些特性在物理学家深入原子核内部进行研究时也发挥了各自的作用。
1700902510
1700902511 他们研究原子核内部的方法是用粒子或者亚原子粒子束轰击原子核,并且测量它们碰撞后弹开的方式。轰击粒子的能量越强,被轰击粒子的情况就能被揭示得越深入。起初,在20世纪早期,是利用天然辐射产生的粒子来进行这样的实验。随着科技的进步,这一技术得到了改进,人们可以用粒子加速器的磁场将电子等粒子加速到极高的能量。这引致大型加速器的发展,例如,位于日内瓦的欧洲粒子物理研究所(CERN,或称欧洲核子中心)等进行的物质本质以及作用力(“自然力”)的尖端研究如今正方兴未艾,本书将在以后章节叙述。
1700902512
1700902513 继剑桥大学于20世纪20年代在实验中发现了原子核之后,在20世纪20年代更进一步揭示出原子核像一个由质子和中子构成的小球,这两种粒子像被紧密压缩在一起的成串葡萄。最简单的氢原子的原子核实际上只有单一的质子,但是其他的原子核却含有中子和质子——如最普通的铀原子便有92个质子和146个中子。每一质子都具有一定数量的正电荷,每一电子也都带有相同数量的负电荷,因此在电中性的原子中质子数与电子数是相同的。每一中子,正如其名,都是电中性的。显而易见的问题是,所有正电荷的质子之间相互排斥作用为何不会将原子炸得四分五裂?后来由实验所证明的显而易见的答案是,必定有某种不为人知的吸引作用(力)克服了原子中粒子之间的排斥力,将原子核保持为一体。因为这一相互作用较电磁相互作用强,因此它被认为是强相互作用(或强核力)。而且,既然其作用力在原子核之外无从探知,那么其作用距离显然很短,仅在原子核这么大范围之内。这便是为何不存在比铀更大的原子之缘故。我们可以这样设想,假如你想要将多于240个质子和中子塞到一起,小球对面的质子仍然会因电磁作用而相互排斥,但是它们却因距离太远而感受不到强作用力的吸引。
1700902514
1700902515 要想探究质子和中子(统称核子)内部,就必须有非常之高的能量,人们从20世纪30年代直至20世纪60年代,积几十年之功,才获得了探明这些粒子内部的可靠模型。其呈现出的图景吻合这样一个模型:核子由3个真正的基本实体组成(与电子一样的基本实体),称为夸克。质子与中子的实验研究支持这一模型的预测,这一模型中存在两种夸克,称为“上夸克”和“下夸克”。质子被认为是由两个上夸克和一个下夸克构成,而中子则由两个下夸克和一个上夸克构成。每个下夸克分配到一个电子的1/3的电荷,每个上夸克分配到一个质子2/3的电荷,这些数加在一起,就是我们观察到的质子以及中子的电荷。
1700902516
1700902517 但是,为何我们从来没有探测到独立的夸克,以及带有“部分”(即非整数的)电荷的粒子呢?夸克模型说明了这一现象(实验也支持这个说法),即成对的或者3个一组的夸克被相互作用力“禁锢”在如质子和中子这样的复合粒子之内,该作用力随着夸克间的距离的增加而增强。引力和电磁力都随距离增加而减弱,但是有一种力,随着距离加大反而会增强,对这种力我们都很熟悉。比如,我们在拉长有弹性的皮筋时,拉得越长,它的反作用力就越大,直到断裂。夸克似乎是依靠弹性松散地与紧邻的夸克相互维系而绕原子核飞速运动,但是只要它想脱离其他夸克,便会立即被拉回来。皮筋这个比方甚至一直到崩断都适用于解释夸克的特性。如果施加足够的能量去移开其中的某一个夸克——例如,该个夸克在加速器实验中被一个快速移动的粒子从外部击中——那么,它与周围夸克之间的相互作用力将的确会遭到破坏。然而,根据爱因斯坦著名的方程式E=mc2,这种情形只有在具有足够的额外能量(E),从而能产生两个新夸克(每个都具有质量m)的情况下才可能发生。所有额外能量都用来产生那些新夸克,每次打破粒子,破裂的两端各会产生一个新夸克,因此我们仍然不能探测到单独的夸克。
1700902518
1700902519 这种单纯依靠能量产生粒子的方式本身(也可以说m=E/c2,而非E=mc2)对我们理解亚原子世界是至关重要的。在粒子对撞机中,两束高能粒子迎头相撞,或者撞击静止靶标。这时,快速移动的粒子会停止下来,而施加在这些粒子上的动能转化为四散飞出的新粒子。这些粒子是因撞击而产生的,并非是存在于原有粒子的内部,而是撞击产生的。它们实实在在是完全通过能量而产生的新粒子。大多数这样产生的粒子并不稳定,会分裂为质量更小的粒子,最终成为普通的质子、中子和电子。但是,它们的分裂可以为研究其内部结构提供线索,这进而促进了标准模型的完善。第一步是找到一个可以描述强相互作用的模型。
1700902520
1700902521 现在,将夸克封闭于原子核内部的相互作用力被认为是真正的强相互作用。原子核之间的作用力,最初的强作用力,被看作是这种真正的强相互作用的较弱的痕迹,它们溢出原子核,影响周围的夸克。支持夸克模型的证据一旦得到证实,物理学家们很快就能建立起一个作用于夸克之间的强相互作用模型,因为他们自20世纪40年代以来,已经建立起了一个描述像电子和质子等带电粒子通过电磁感应而相互作用的极其精确的模型。
1700902522
1700902523 这一模型以场理论为基础,就像我们所熟知的磁场,这是一种来自某处而散布在空间中的作用力。对于磁场,我们甚至可以“看到”它是如何起作用的。把磁条放在一张纸的下面,将铁屑撒在纸上,轻轻地弹一下纸面就可以看到铁屑沿磁场磁力线方向排列。因为现代场理论融合了量子物理学说,因而被称为量子场论。量子理论有关电磁感应的一个特殊之处便是光7来自于被称为光子的夸克。光子在量子物理语汇中被称为场量子,而且被认为是由场中被外来能量“激发”出来的那一小部分。
1700902524
1700902525 在20世纪30年代,物理学家们提出:电磁作用可以被表述为带电粒子间光子的交换。这一模型的早期版本预测的带电粒子状态的属性与实验观察到的属性相近,但与实际测量到的带电粒子间相互作用的值不太一致。但是,到了20世纪40年代,这些不一致得到了解决,而且借助量子世界最怪异特点之一的“不确定性理论”,现代量子电动力学理论得以发端。
1700902526
1700902527 量子不确定性实际上非常精确。这一理论由德国物理学家维尔纳·海森堡(WernerHeisenberg)于20世纪20年代晚期提出,最初着眼于粒子的两种惯常属性——粒子的位置与动量(物体运动方向与运动速度的度量单位)。在日常生活中,我们通常认为,原则上可以同时度量物体的位置与动量(比如对台球就可以)。在同一时刻,我们能既知道物体的位置,又知道其去向。海森堡发现对于电子与光子等量子实体来说,情况并非如此——而如今只要我们对其波粒二象性稍加思考,就会觉得这一点是显而易见的。位置确实是粒子的典型属性,但是波在空间中并无精确位置。如果量子实体同时具有(或表现的似乎具有)粒子和波两方面的特性,那么无法精确判定其位置便不足为奇了。
1700902528
1700902529 海森堡发现,量子实体位置的不确定性程度(所处位置的不确定性)与其运动的不确定性(运动方向的不确定性)有关,即位置越精确则动量越不确定,反之亦然。联系两个不确定性的数学方程式如今被称为海森堡不确定性关系(Heisenberg’suncer-taintyrelation)。不确定性的关键之处并非源于人类认知水平浅陋,或者诸如测量电子等物理现象的实验手段之不足等原因。它是依循量子世界的特性而固有的。确切地说,电子的确不会同时具有精确的位置和动量。例如,封闭在原子中的一个电子,在空间中的定位是相当精确的,但是当其围绕电子云运动时,其运动却是不断变化的。像波一样在空间中运动的电子可能具有非常精确的运动,但是它并不在波的“某一点”上存在。
1700902530
1700902531 尽管这些已经够让人不可思议的了,但这还不是故事的全部。量子世界中,同样的量子不确定性适用于另一些相互对应的属性,其中的一组便是能量与时间。把海森堡不确定性关系与爱因斯坦的狭义相对论(该理论探讨的完全是时间与空间的关系)结合起来,我们就知道,假设“你”对看似真空的一定体积的空间进行一段时间的观察,却不能确定其中究竟蕴含着多少能量。对此感到迷惘的不仅仅是“你”。对于位置与运动,大自然本身亦无从了解。如果花费的时间长一点,你就能确定空间是真空的(或者非常接近真空)。但是,花费的时间越短,你对某一体积(的空间)中存在有多少能量就越是无法确定。在足够短的一段时间内,只要能量能在不确定性关系所设定的时间内再次消失,那么就存在一种可能性,在那一时间段内,能量会充满这一体积的空间。
1700902532
1700902533 这种凭空产生的能量可能以光子的形式出现,并且很快消失。或者这种能量甚至会以比如电子之类的粒子形式出现,只要它们是存在于不确定关系所允许的短暂时间中。这种短暂存在的实体被称为“虚拟”粒子,而这整个过程则被称为“真空涨落”。在这个模型中,“真空空间”或者“真空”,从量子的规模来看,是存在扰动的。具体说来,像电子等带电粒子会混迹于大量虚拟粒子与光子中,并且这些虚拟粒子和光子,虽然存在周期短暂,也会与电子发生作用。采用量子电动力学来解释大量虚拟粒子的存在,可以精确预测出与实验中测得的带电粒子属性相一致的结果。实际上,实验结果与这一模型的吻合程度精确到了100亿分之一,或者0.00000001%。我们之所以无法达到更高的精确度,只不过是因为能够进行更精确测量的实验方法尚未设计出来。对于科学模型的检验而言,这已是世上理论与实验的一致性最高的实例了。即便是牛顿的万有引力定律也没达到这种精确程度。从测量的角度来说,量子力学是整个科学界最成功的模型。而且,只有将量子不确定性、扰动真空和虚拟粒子的作用都包括在内的话,才能达到如此高的一致性。整个模型通过了检验。
1700902534
1700902535 因此,当物理学家意欲建立一个夸克与强相互作用之间相互作用的模型时,他们很自然地想到了采用量子力学作为模板,并且试图提出一个类似的量子场理论。在这一模型中,负责传导强相互作用的场粒子被称为“胶子”(gluon),因其将夸克胶合在一起。正如光子与电荷相联系,胶子与另一种称为色子(colour)的电荷相联系,但这一术语与通常所理解的色彩毫无关系。电子只有两种变化,正极与负极,而色子有三种变化,称为红、蓝和绿。为使强相互作用模型有效,需要8种不同的场量子,而电磁模型只需要一种,就是光子。此外,胶子具有质量,这与光子不同。
1700902536
1700902537 基于量子电动力学的强相互作用模型被称为“量子色动力学”(QCD),因其是以色彩名称来表示的。因为场量子种类更多,情况复杂,并且具有质量,QCD(量子色动力学)所做预测与实验结果的一致程度不如QED(量子电动力学)预测得精确,从而意味着标准模型并非是物理界的终极结果。但是,标准模型仍然是我们关于质子与中子等物理原理最好的解释。
1700902538
1700902539 光子与胶子等场量子统称玻色子[为纪念印度物理学家萨蒂恩德拉·玻色(SatyendraBose)],而我们过去惯常认为的电子、夸克等粒子被称为费米子[以意大利物理学家恩里克·费米(EnricoFermi)的名字命名]。正如玻色子可以看作场量子,费米子也被认为是与“物质场”有关的量子,这进一步混淆了“粒子”与“作用力”的区别。然而,两者之间的确是有区别的。其主要区别是,玻色子仅凭能量便可无限制地产生出来——你每次打亮手电便有数十亿计新生的光子涌入室内。但是,远溯至大爆炸,直至今日,宇宙中费米子的数量一直保持不变。从能量中产生一个像电子一样的“新”费米子的惟一方式,是能同时产生出一个镜像的反粒子(对于本例来说就是一个正电子)。这一镜像粒子具有相反的量子属性(本例中就是带正电荷而非负电荷的电子),因此从计算费米子数量的角度来看,这两种粒子正负相抵,同归于无。关于反物质,本书后面的章节仍要谈到。
1700902540
1700902541 因而,我们现在知道有3种不同的费米子——电子、上夸克和下夸克。我们也知道有3种不同的相互作用——引力、电磁力和强相互作用力。然而,还有一种费米子和相互作用要加进来。标准模型中这些额外的因素是解释19世纪初观测到的一种现象所必需的,但是直到20世纪60年代该现象才用数学方式圆满地表述出来。这一现象称为贝塔衰变,与原子放射出电子(过去被认为是贝塔射线)的过程有关。之所以花了这么长时间物理学家才弄清楚这一现象的原理,是因为随着物理学家对原子结构的探索不断深入,其特性似乎也不断发生变化。
1700902542
1700902543 从某种程度来说,既然原子中含有电子,那么原子可以放出电子是不足为奇的。然而,实验显示,贝塔衰变过程所释放的电子实际上是来自原子中的原子核,可原子核中并不含有电子,只有中子和质子。实验发现,在贝塔衰变过程中,中子分裂出一个电子,并将自身转变为质子。这样,正电荷与负电荷便相互抵消了,宇宙中也没有发生电荷的变化,但是一个额外的费米子似乎是产生了。另外,为了平衡放射出的电子的能量与动能,似乎应有一个看不见的粒子以相反方向从衰变的中子里飞出来。这两个谜题到了20世纪30年代早期才得以解决,即当能量产生出一个贝塔衰变的电子之时,会产生一个对应的费米子,这称作中微子(严格说来,为平衡费米子的数量,还需要产生一个反中微子)。中微子不带电荷而且质量极小,所以直至20世纪50年代这一猜想[由奥地利物理学家沃尔夫冈·泡利(WolfgangPauli)提出]才被实验所证实,但也仅是“证”实而已。但是,即便在那时,人们也清楚,中子“内部”既不存在电子,也不存在中微子。由于贝塔衰变,中子的内部结构被重新排列,以这两种粒子的形式放出能量,并且将中子转变成质子。
1700902544
1700902545 现在人们用夸克理论来解释这一过程。1个中子含有2个下夸克和1个上夸克,而1个质子含有2个上夸克和1个下夸克。下夸克带有相当于一个电子1/3的电荷,而上夸克带有一个电子2/3的电荷。因而,如果1个下夸克转换成1个上夸克,恰好剩下只有1个单位的负电荷必须被带走,而这一负电荷的缺失,构成1个单位额外正电荷的整体平衡。这便是两个负电荷生成1个正电荷的极好例子。中子变成了质子。电荷由电子带走,而某些额外能量则由反中微子带走。这样,宇宙中费米子的数量和整体电荷的数量保持不变。因为下夸克的质量大于上夸克的质量,而质量等效于能量,一切便能维持完美的平衡。当然了,这还需要有一种额外的相互作用力在相关粒子间起作用。
1700902546
1700902547 这种“新的”相互作用力被称为弱相互作用(因其强度不及强相互作用力)。关于它的理论已经能帮助我们洞悉放射性衰变(当原子核分裂之时)和核融合(nuclearfusion,当核子聚合以产生更为复杂的核子之时,正如恒星内部所进行的)的过程。为了与实验数据相符,弱相互作用要求存在3种玻色子,W﹢和W﹣粒子,每一种都带有适当单位的电荷,以及电中性的z粒子。这种模型比起QCD来,能更方便地用数学方式表述,但是比QED复杂。如今,弱相互作用理论不仅仅用来表述简单贝塔衰变,为描述这一原理,现代贝塔衰变理论的图景可以设想成1个下夸克以W玻色子的形式释放出能量,将自身转变为1个上夸克,然后W玻色子的能量在极短时间内以1个电子和1个反中微子的形式将自身转变为物质。
1700902548
1700902549 W粒子与z粒子像胶子一样具有质量,而模型预测了它们的质量。标准模型最伟大的成就之一,就是在20世纪80年代,位于日内瓦附近的欧洲核子中心的实验室探测到了这些粒子,而且发现它们的质量恰如模型所预测的那样。自那以后,尽管在某些方面标准模型变得越来越复杂,但在另一些方面却愈发简单。
1700902550
1700902551 标准模型的精髓是仅以4种粒子表述我们熟知的物质世界。还有就是四种相互作用8。这4种粒子是电子和中微子(统称轻子),以及上夸克和下夸克。4种相互作用是引力、电磁力以及弱核力和强核力。这便是物理学家们解释地球上一切自然现象和我们能看见的太阳和所有恒星运动所需要的全部东西了。但是,让他们诧异的是,这些竟然还不足以解释在他们的粒子加速器中所观测到的非自然的高能过程。
1700902552
1700902553 的确,在宇宙中似乎只有这四种相互作用在起作用。奇异之处在于粒子世界不仅是双重的,而且在高能量下还会是三重的。如果有足够多的能量,就有可能进一步产生出两代短暂却具有质量的所有4种基本粒子的对应物。首先,存在着与介子中微子相联系而被称为“μ子”介子的电子的重对应物,和两种被称为“粲”(charm)和“奇”(strange)的更重的夸克。其次,是称为τ介子的更重的“电子”,与之相关的是τ中微子,以及称为“顶夸克”和“底夸克”的两个非常重的夸克。欧洲核子研究中心的精密实验证实,这便是终极答案了。无论在粒子碰撞中增加多少能量,都无法再得到第4代粒子。
1700902554
[ 上一页 ]  [ :1.700902505e+09 ]  [ 下一页 ]