1700902599
因此,没有证据表明超对称性理论是错误的,甚至,我们很快就可能找到证据表明它是正确的。物理学家们之所以对大型强子对撞机的前景兴奋不已,原因之一就是它能够产生超对称性配偶子(或称超对称性伙伴,suPersymmetricPartners),其质量是质子质量的数千倍(数万亿电子伏特)。如果大型强子对撞机不能产生出希格斯粒子(HiggsParticles),那便会太出乎意料了,整个大统一理论也恐怕要另起炉灶了。不过这种事情几乎不可能发生,原因之一是大统一理论至少有一项可取之处。对其有利的证据的来源表明,粒子物理学家为了检验其模型,正不断地求助于天文学。
1700902600
1700902601
最小超对称性的另一个预言就是中微子也有微小质量。在不包含超对称性的标准模型中,中微子像光子一样完全没有质量。20世纪60年代后期,一个旨在观测太阳中微子流的实验显示到达地球的中微子微乎其微,这一直以来都是一个谜。太阳中心的核反应产生大量电子中微子并使其得以发光,而且这些倾泻到地球上(并穿越过去)的中微子可以通过核物理学和天体物理学标准模型预测出来。然而,当雷·戴维斯(RayDavis)与其同事在美国开始中子流观测实验时,他们仅仅发现了相当于预测值1/3的此类粒子。假定核物理学与天体物理学模型是正确的——有众多独立证据证明这一点——一种可能的解释是,电子中微子在飞向我们的途中,变成了另外形式的中微子。这一过程称为振荡,即电子中微子会变成μ介子和T粒子中微子,而后在穿越空间时再变回电子中微子,或者两者的混合,因为最初的电子中微子最终混入了三种形式的中微子。因为中微子共有3种,而且混合得很平均,这一过程就导致了戴维斯所设计的探测器只能发现1/3的中微子,因为它“看不到”其他形式的中微子。但是,只有在中微子具有质量的情况下,才会发生这种振荡。在20世纪70年代,这可是戏剧性的发现,而且是物理学界一项新的进展。天文发现向物理学家们展示了所知最微小粒子的特性。依靠这些开创性的实验,其他的地面上进行的对太阳中微子的研究以及实验中对中微子振荡的直接观测,都证实了天文学家是正确的。中微子的确具有质量(大约不到1/10电子伏)12,而且它们也发生振荡。循着这一系列发现,我们很快便会看到,天文学与粒子物理学的联系越来越紧密了。
1700902602
1700902603
总而言之,大统一理论与超对称性理论的结合看来前景广阔,而且其预测结果将在21世纪头10年之内得到检验。如果实验顺利,下一步将是设法将重力纳入这一体系,造就真正的万物至理。总之,若要做到这一点必须将引力作用表述为粒子交换的形式,称为引力子,而且必须假定存在超对称性对偶子——引力微子(gravitino),从而将引力纳入超对称性体系。这种对大统一理论的变革统称“超引力理论”,但它们推测的成分多一些,尚待实验检验。引力子并不单纯是由超对称性大统一理论(SUSY GUTs)预测出来的。任何版本的量子理论都将引力作用想像为引力子交换,就像电磁作用是通过光子的交换起作用一样。广义相对论指出,引力作用与引力波相联系,正如电磁作用与电磁波相关一样。光子是电磁场的量子,同样,引力子是引力场的量子。引力子必须像光子那样无质量,以便引力产生像电磁作用般的远距离影响。但是,与光子不同的是,引力子能(根据模型如此)相互作用,使得计量起来极为困难。因为,引力极其微弱,所以就需要极其敏感的探测器来识别与引力子有关的波。这样的探测器正在建造中,大约再过不了几年便可直接用来探测引力辐射。然而,已经有天文观测证据表明(此处指关于脉冲双星的研究,即相互绕转两颗中子星),引力波是存在的。
1700902604
1700902605
如前所述,爱因斯坦广义相对论曾预言了引力波的存在,即将空间(严格而言,是“时空”)视为因物质存在而被扭曲的弹性实体。假如你将真空空间想象为一个被拉伸的扁平橡胶皮,那么上面的弹子球将会沿直线从上面滚过。但是,假如你在其上放置一个重物,如保龄球,橡皮膜便会下凹。这样,从重物旁边滚过的石球便会围绕下凹处呈曲线运动。辅之以恰当的数学模型便可精确解释为何从太阳近旁经过的光线会发生偏移,并计算出偏移的程度——爱因斯坦的这一预言已经被1919年的日食观测结果所确证了。
1700902606
1700902607
然而,更进一步,你可以想象保龄球在橡胶皮上上下弹跳,并在上面制造波动。根据爱因斯坦的方程式,宇宙中所有振动的物质都会在时空中产生波动,而且在三维空间中这些波动应当能被探测到。引力波的影响实际上相当小,因为与自然界其他三种力相比,引力非常微弱——这倒也是我们的幸事一桩,不然宇宙中任何有序结构(包括我们人类自身)都会被穿越宇宙的引力波给撕成碎片了。但是,物质产生的最剧烈的波动,例如一颗恒星坠入黑洞,应该会在空间产生足够强大的波动,令新一代的仪器可以探测到它们。
1700902608
1700902609
我们不打算将本书所涉所有实验事无巨细地倾囊而述,结果重于如何获取结果的细节。但是,或许我们有必要选取一个例子来说明,在21世纪初的若干年里,某些科学研究需要国际社会通力协作,并且要集中众多研究者之力,才能完成之。
1700902610
1700902611
如今正在进行的引力波实验有4个。规模最大的1个(LlGO)在美国,另有1个在日本(TAMA),1个法意联合实验(VlRGO),以及1个我们将要细述的称为GEO600的英德探测器项目。大家可不要以为这是4家在共同竞争一项全球的项目。实际上,要想确定真的探测到了引力波,需要至少两个探测器,这样,通过两个探测器记录下同一时间所发生的波动,来确认这不是由附近的干扰所造成的,比如有卡车通过或发生了滑坡。而为了确定引力波来自天空的哪个位置,以及波动的其他详细属性,则至少需要4个探测器。这4个探测器的工作原理类似,但在某些方面GEO600是最复杂的,因为受限于严重的财政困难,实验者不得不穷尽其才智,开发新的技术来实现其目标。在20世纪80年代末,同样的财政拮据曾迫使英、德两国进行了一场后来证明是非常愉快的合作,因为没有一个国家能够独立承担建设引力波探测器。21世纪重大科学研究往往要采用这种多国合作的形式,而且我们将发现,现在由单独一个国家进行尖端研究已经是极为罕见了(更不用说单独一所大学的一个研究小组了)。孤独的天才的时代——比如牛顿或爱因斯坦的时代——早已不复存在。
1700902612
1700902613
GEO600这个项目名称中,GEO所代表的是Gravitational EuroPean Observatory,即“引力欧洲天文台”——当然颠倒一下前两个词,说EuroPean GravitationalObservatory(即欧洲引力天文台)更自然,但是其缩写EGO,恰好是“自我、自负”的意思,有影响其公众形象的嫌疑。不过,实际上,实验者对自己的评价还是蛮高的。项目名称中的600指的是实验的规模,其中包括两个分支,每边有600米长,彼此成直角。两个边的长度取决于可用空间的大小。它位于汉诺威以南的农田里,这块地归巴伐利亚州,由汉诺威大学的农业研究中心经营管理。两个边都是沿着农田里的道路修建的,周围是庄稼和果树。事实上,其中一边超出了研究中心的农田边界,进入了毗邻的农场,探出的距离为27米。为此,GEO600每年要向该农场主支付270欧元作为租金。
1700902614
1700902615
每个边里面都有一根管子,直径60厘米,由带皱褶的金属制成,仅为0.8毫米厚。管内是真空的,程度与外层空间相当,真空中悬浮着镜子,用来反射沿着管子照射来的激光束。每个镜子重6千克,由4根玻璃“线”悬挂起来,线的直径只有五十万分之一米。整个系统非常之精细,通过分析镜子反射的激光器发出的光信号,研究人员最终能够测量出每一边的不到10-18米(也就是不到一百亿亿分之一米,或是质子直径的百万分之一)的长度变化。在2004年末,英国格拉斯哥大学的研究小组的负责人吉姆·霍夫(JimHough)说,试运行所达到的灵敏度比其目标偏离了10倍(精度“仅仅”达到了10-17米),GEO600应在2006年年底之前达到其设计的灵敏度。
1700902616
1700902617
根据广义相对论,引力波通过实验设备的时候,会产生独特的“记号”:首先是将其中一个臂拉长一定的量,并同时压缩另一个臂,然后这一进程会反过来出现一次。它就像是时空中的地震,同时让你先长高变瘦,然后逆转这一过程,让你变矮变胖。正是有这种独特的模式,我们才能测量这种微小的变化。即使GEO600系统无法以如此高的精确度测量某个真空管的长度变化,但是通过比较两根管子里的激光束的干涉情况,也可以测量出两根管子的相对变化。如果GEO600发现这样的记录的同时,LlGO或其他的探测器也测量到了类似的变化,那么研究人员就能断定,他们看到的是穿越空间和地球的引力波的波纹。除了最初的发现可能带给我们的兴奋之外——从现在起,这随时都可能发生——未来的对于此类事件的观察将提供洞察宇宙中最大的爆炸的机会,也许能让我们有机会了解宇宙大爆炸本身。
1700902618
1700902619
吉姆·霍夫说,在2009年前,GEO600观测到这样的信号的概率为50/50。如果做不到,下一步研究者将要升级LlGO,为这个更大的实验设施安装根据GEO600的创新设计改造的探测器(LlGO的单臂长度是4千米,但是其探测器不如GEO600的复杂,因此其精度与GEO600目前的精度相当)。霍夫说,经过改进,他百分之百确定,到了21世纪第二个10年,一定会发现引力辐射。他之所以有这样的信心,其中一个原因是无论地面实验发生什么情况,到了2012年,空间实验LlSA(激光干涉空间天线)项目都会发射升空。该实验包括三个编队绕太阳轨道飞行的航天器,各自相距500万千米,呈三角形分布。连接3个太空探测器的激光束将能够测量其相互距离的变化。这种变化是由引力波压缩和伸展扩张本身所造成的,其精度约为一千亿分之一米(10微微米)。13
1700902620
1700902621
与此同时,抛开寻求引力辐射所取得的进展不说,寻求万物至理的努力在20世纪80年代中期得到了提升。当时有一类模型在建立的时候尚未考虑引力,其演算结果却自动包括了作为引力相互作用承载着的玻色子的所有属性。这些所谓的弦模型(理论)是目前物理学界在讨论万物至理的时候最热门的话题,我们回头还会继续讨论它。
1700902622
1700902623
弦的观念一部分来自数学物理学家在把玩方程的时候的天然兴趣,一部分则来自一个关于所有粒子的非常实际的问题,即人们将所有粒子看作是没有半径或体积的点。可问题是,在描述类似电场力的情况时——比如说其电场力与某个电子直接距离的平方成正比——如果电子没有大小,那么这个距离就可以一路算下去,直到为零。可是拿任何数除以零都得到无穷大,这样方程的解就是无穷大,这毫无道理。解决这一困境的办法叫做“重整化”。这样在求解的时候,用一个无穷大来除以另一个无穷大,这样就能获得一个合理的答案。重整化可以较好地解决标准模型和量子色动力学中的问题,但它确实是没有办法的办法。许多著名的物理学家,其中包括理查德·费曼,都认为重整化说明该模型存在严重的缺陷。
1700902624
1700902625
弦理论则认为构成物质世界的基本实体是可以延展的对象——弦——而不是点。弦的端点可开可合,可以是开放的,也可以构成微小的环。根据该模型,它们甚至能以比任何我们能够想象到的规模更小的规模存在——到这个程度上,说出其长度恐怕难以有任何意义了:一个弦的长度约为10-33厘米长。这大约是质子半径的一万亿亿分之一(10-20);换一种说法,假如说一个质子的直径是100千米,那么一个弦的长度才相当于实际质子直径的长度。要想测量弦的长度,恐怕根本没有任何希望,因此要想检验弦理论是否成立,只能是检验其对于质子尺度的世界所作的预测是否成立。14有两件事使弦模型成了今天的一个热门话题。首先是一类弦模型没有必要重整化——或者更确切地说,它们似乎是自身自动进行了重整化,无需数学家的任何帮助;方程中所有的无穷大似乎自动抵消了。第二点——这也是在绝大多数物理学家眼中更为重要的一点——是弦模型包括了引力子在内。这完全是意外之喜。在20世纪80年代,那些鼓捣弦理论的理论家当时并没有认真考虑引力的问题(虽然他们的脑子里总会想着万物至理的事儿),可是令他们感到困惑和烦恼的是,为了使他们的方程平衡,模型中需要有一种不适合标准模型以及大统一理论的要求的粒子。最后他们才意识到,这种粒子就是引力子,于是乎这一研究话题迅速蹿红。让他们声名鹊起的研究在外人看起来确实很炫目。
1700902626
1700902627
要想让弦理论成功,你要付的代价是要引入额外的空间维度,这超越了我们熟悉的三个维度(前后、上下、左右),再加上第四个时间维。奇怪的是,这一想法可以追溯到20世纪20年代,当时物理学家只知道两种相互作用,即引力和电磁力。在确定存在核相互作用之前,有一段短暂的时间,当时看起来似乎增加第五维就能获得20世纪20年代的将引力和电磁力统一起来的“万物至理”,但是当人们发现了更多的相互作用后,这一想法就被抛弃了,一直到半个世纪后才被重新拾起来。
1700902628
1700902629
这一想法脱胎自爱因斯坦的广义相对论,该理论用四维时空中的扭曲结构来描述重力。1919年,一名年轻的德国数学家西奥多·卡鲁扎(TheodorKaluza),想知道如果拿爱因斯坦的方程式来描写五维时空的扭曲会是什么样的。他当时没有理由认为这种方程对于现实世界会有什么意义,他只是出于数学上的好奇心探究这一切。没想到,他发现五维版的广义相对论是由两套方程构成的——一套是人们熟悉的广义相对论方程,另一套则是人们更加熟悉的与麦克斯韦电磁方程组完全等同的方程。简而言之,如果引力可以看成是四维时空中的波,电磁则可以看成是五维时空中的波。瑞典物理学家奥斯卡·克莱因(OskarKlein)进一步发展了这一想法,纳入了量子理论的思想。该模型被称为克鲁札克莱因模型(theKaluza-Klein model)。从数学角度讲一切都很完美;惟一的缺憾是日常的世界中不存在第五维度(即第四个空间维)。但是,物理学家使用了一个称作“紧化”(comPactification)的小伎俩绕过了这一难题。
1700902630
1700902631
我们举一个例子,就能很好地理解什么是“紧化”了。一片薄薄的可弯曲的东西,例如橡皮,实际上是一个三维物体,但从远处看上去却像是二维的,因为它的厚度看不出来。为了本例的需要,我们假定它确实是一个二维的薄片。接下来,我们把这张薄片卷成管装,使其边缘连到一起。这个二维的薄片就卷在了第三个维度的外面,而且如果我们从更远的距离看过来,它看起来像一条一维的线。但是这根线上的每个“点”实际上是一个小圆圈,围绕着管子,二维薄片中的涟漪,即使我们无法看到它们,是可以沿着管子向上和向下传播的——这种涟漪是带有能量的,所以它们会影响整个线的行为。薄片的二维中,有一维我们是看不到的,这实在是因为它太小了,但是我们仍然能感受到它的影响。以类似的方式,我们可以想象在最初的克鲁札克莱因模型中,对于第四维空间可以设想,四维时空中的每个点其实是一个小环,其直径只有10-32厘米,绕着第五维弯曲。
1700902632
1700902633
至少在某些物理学家看来,为了得到一组方程来描述所有已知的相互作用,这似乎是可以接受的代价。在量子的意义上,克鲁札克莱因模型相对简单,因为它只需要处理两个玻色子——引力子和光子。但是很快有更多的相互作用被发现,它们的行为也更复杂。为了把强、弱相互作用以及它们的所有玻色子包括在内,就需要有更多的维度,以更加复杂的方式缠绕在一起,这在当时实在太多了,超过了人们所能接受的限度。因此,在建立标准模型的时候,克鲁札克莱因模型只不过是一种新鲜的小玩意儿罢了。但后来长大的那一代数学物理学家对于多维度则较为接受。15而且,20世纪80年代人们便已明了,实现标准模型向万物至理之飞跃必须另觅蹊径。
1700902634
1700902635
这一新思想综合了弦理论和额外维理论。其现代的21世纪的形式,即我们已经描述过的微小环状的弦的概念,总共缠绕在26个维度上。我们惯常所认为是粒子的各种事物(如电子、胶子等)对应于有着不同的振动的弦,其所附带的能量不同,就像吉他的琴弦,振动频率不同对应不同的音符一样。费米子解释起来相对简单,其振动是在10个维度上,沿着弦的循环以同样方向振动。其中六个层面是紧化的,以留出我们熟悉的四个维度的时空。然而玻色子的世界较为丰富,需要在26个维度振动,沿着弦的圆环的另一个方向振动。其中的16个维度是为了描述丰富多彩的玻色子所必需的,而这些维度都被紧化在一起,成为10维的弦“内部”的东西。没有人知道这究竟是什么意思,理论家也在争论这些维度是否是“真的”。但是,从我们的角度看,最要紧的是,玻色子的行为让我们看起来它似乎是带有这些额外的维度。其他10个维度与费米子的振动所发生的维度相同。其中的6个维度紧化,因此弦产生的振动使其表现为在四维时空中的粒子运动。由于该模型需要有两套不同的振动发生在一种弦上,它有时被称为混杂型弦理论。
1700902636
1700902637
对于此,还有一个额外的奇怪之处,这突显了我们对于“额外”的16个维度的理解尚不完美。所有的粒子实际上可以用16个维度紧化为8个维度来描述,因此这就留出了余地,可以存在一套重复的粒子。没有人完全知道这意味着什么,或者,一些理论家猜测,可能有一个完整的“影子宇宙”是由这些粒子副本构成,它与我们一起分享四维时空,但却不与我们发生相互作用,除非是通过引力。一个影子人可以径直从你身边走过去而不会引起你的注意。但是,我们还是将进一步的猜测留给科幻作家吧。弦理论近年来真正的进展来自重新解释该模型的其他部分,即10维的组成部分。
1700902638
1700902639
到目前为止,我们专门谈论了弦理论,好像它是惟一的一个适合我们需求的模型。弦理论的支持者们确实抱着这样乐观的态度,但是在从20世纪80年代中期到90年代中期的十年里,它掩盖了一个尴尬的事实。其实曾经有(现在仍有)5个不同的弦理论模型,它们是弦的主题的变奏,每一种都提供了一个对万物原理稍有不同的解释,但所有这些都涉及6个由振动的弦构成的紧化的维度在四维时空中的运动(加上额外的16种玻色子维度,没有人真正理解这些维度)。你可能猜想,对于物理学家来说,这倒并不是那么令人不安,因为他们能够证明从数学上讲,这些是惟一可能的模型——他们也能够想出其他类型的弦模型的数学版本,但他们可以证明,所有那些模型都受到无法重整的无穷大的困扰,因而没有实际意义。
1700902640
1700902641
而且滑稽的是——另外有一种被称作超引力的弦理论,似乎能够解释五种弦模型中的任何一种,但是它却需要有11个维度而非10个。可是,超引力并不是哗众取宠的噱头,后来证明,它只能在11维度起作用这一特性为当时的研究提供了重要线索。
1700902642
1700902643
经过20世纪90年代初期许多理论家的巨大努力之后,在1995年美国物理学家爱德华·威滕把所有的弦理论模型整合到一起,增加了一个额外的维度。他表明,弦理论的所有6名候选理论,只不过是一个主模型的不同方面,他把这个主模型称作M理论。在低能量的状态下,电磁和弱相互作用看起来像是不同的东西,但实际上却是单一的电弱相互作用的各自独立的表现形式。与此类似,弦理论的6种候选模型也是单一的M理论的低能量的表现形式,只有当我们能够制造出相当于强相互作用的能量时,才会表现出来。威滕为此不得不付出的代价是为弦理论引入一个额外的维空间。这样,像超引力一样,它们也是在11维时空运行。当你已经有了6个维度,另外一个微小的紧化的维度看起来似乎不像是向前迈进了一大步。但是M理论的这一“新”维度却不一定是微小的维度。它可以非常大,但无法探测,因为它与我们熟悉的三个维度的空间成直角。我们这种生活在三个维度中的动物,是无法理解四维世界的(更不用说十维了!);16这就像生活在两维世界(就像无限薄的一张纸)的生物不知道存在三维世界一样。
1700902644
1700902645
这就改变了我们思考世界机制的方式,我们不再把粒子看作是可以检测到的弦的振动,而是必须将其看作震动的薄片或是膜。出于这个原因,虽然爱德华·威滕从来没有明确说过M理论中的M代表什么意思,许多人却认为它代表的词是“膜”。从更技术的角度上讲,一张两维的薄片被称为双膜,而且一直到多达10维都有对应的结构(尽管很难想象),一般称之为P膜,其中P可以是任何小于10的整数,一个弦则是“一膜”。
1700902646
1700902647
这样一来,我们的整个宇宙可能就是一个嵌入在更高维度里的三膜。这就带来了一个可能性,即可能存在其他的三维宇宙与我们的宇宙平行存在,也是嵌入在更高的维度,但我们完全无法进入。大家可以把这些宇宙看作是一本书的页面,这些页面像是一系列两维宇宙,这些宇宙相互之间紧挨着,但是对于生活在其中一个宇宙中的任何二维生物来说,其中的一个页面就是整个的世界。
1700902648
[
上一页 ]
[ :1.700902599e+09 ]
[
下一页 ]