打字猴:1.700906944e+09
1700906944 探讨两个黑洞合并时所释放的引力能的理论极限是很有意义的。在 70 年代早期,罗杰·彭罗斯( Roger Penrose )、霍金、勃朗顿·卡特( Brandon Carter )、雷莫·鲁菲尼( Remo Ruffini )、拉里·斯玛尔( Larry Smarr )和其他一些人已经完成了有关这些过程的理论工作。如果两个黑洞有相同的质量,并且无旋转,那么能释放出大约 29% 的总静止质量能。如果以某种方式对这两个黑洞加以巧妙的处理,那么这些能量不一定完全以引力辐射的形式出现。但是,对于自然并合体,大部分能量就应当以这种极其难以察觉的形式释放出来。如果黑洞以物理定律所允许的最大速度(粗略地说就是光速)在自转,而且以反向旋转的方式沿着它们的自旋轴并合,那么就会有 50% 的质量能发射出来。
1700906945
1700906946 即使有这么大的比例也还不是理论极限。可能存在带电荷的黑洞。一个带电黑洞既有电场又有引力场,两者都可以储存能量。如果一个带正电的黑洞遇上另一个带负电的黑洞,就会发生“放电”,在这一过程中所释放的不仅有引力能而且还有电磁能。
1700906947
1700906948 事实上,给定尺度(或质量)的黑洞只能携带不超过某个极大值的电荷量,因此这种放电存在某个极限。对无自转黑洞,这个极大值可由如下的考虑来决定。设想有两个带有等量电荷的相同黑洞,黑洞的引力场会在它们之间产生吸力,而电场则产生斥力(类似于电荷相斥)。当荷质比达到某个临界值时,这两种相反的力恰好平衡,于是在两个黑洞之间便不存在净力。正是这个条件决定了黑洞可以包含的极限电荷量。你也许不知道,如果设法增加黑洞的电荷使之超过这个极大值,将会发生什么情况。要做到这一点的一种途径是强迫更多的电荷注入黑洞。这种做法会起到增加电荷的作用,但为克服电斥力做功就要施加能量,这份能使传递给了黑洞。因为质能相当(记住 E =Mc2 ),黑洞的质量就增大,体积也随之变大。简单的计算表明,在这一过程中质量的增加要比电荷增加得更多,结果荷质比实际上减少,而企图超过这个极限的努力终告失败。
1700906949
1700906950 带电黑洞的电场对黑洞的总质量是有贡献的。对携带最大允许电量的黑洞来说,电场代表了一半质量。如果两个无自转黑洞都带有极大电荷,但电荷的符号相反,那么它们彼此间存在两种吸引力:引力吸引和电磁吸引。当它们并合时,电荷中和,而电能就能被提取出来。理论上说,它能达到这种系统总质量能的 50% 。
1700906951
1700906952 如果两个黑洞都在自转,并带有极大相反电荷.那么所提取的能量便达到绝对上限。这时,总质量能的三分之二可以释放出来,这个比例是很高的。当然,这种数值只有理论上的意义,因为实际上黑洞不可能携带大量的电荷,两个黑洞也不可能以这种最佳方式并合,除非有一个技术发达的社会能对它们实施巧妙的人为控制。然而,即使两个黑洞的低效率合并也可能把这两个天体总质量能的可观部分几乎在瞬息之间释放出来。在它好几十亿年的生涯中,恒星依靠核燃烧大约释发了百分之一的质量,相比之下可谓微不足道。
1700906953
1700906954 这些引力过程的意义在于,在恒星的核燃烧结束后,它的死亡之旅仍是漫漫无期的。作为一个坍缩后的残骸,它还有潜力通过引力释放能量,而且远远超过当它还是个灼热气体球时由热核过程所放出的能量。当这个事实大约在 20 年前被人们认识之时,物理学家约翰·惠勒( John wheeler ,他是最早提出“黑洞”这个词的人)设想有那么一个文明世界,由于它们对能量的需求不断增加,结果便放弃了自己的恒星,并在一个自转黑洞周围安居下来。每天,这个社会的废物被装上载重卡车,并通过一条经仔细计算过的弹道送往那个黑桐。在接近黑洞时,卡车上的废物就卸下来倒入黑洞。通过这种方式,废物便一劳永逸地处理掉了。下落的废物沿着与黑洞自转方向相反的路径飞行,它会影响黑洞的自转,使自转速率稍稍减慢。于是,黑洞的自转能就释放出来,而文明世界便可以利用它为自己的工业提供能源。因此,这个过程具有彻底销毁一切废物并把它们完全转变成能量两大优点!文明世界可以在需要的时候通过这种方式,从死亡之星获取能量,而且能量的供应要比恒星在核燃烧阶段所发出的大得多。
1700906955
1700906956 虽然利用黑洞能是一种科学幻想,但是,许多物质将会在黑洞内自然地寿终正寝。它们可以是坍缩恒星的一部分,也可以是偶然相遇而被吞食的碎片。凡是在我作黑洞讲演的时候,人们老是要问进入黑洞的东西会发生什么情况。简单的答复是:我们不知道。老实说,我们对黑洞的认识几乎完全基于理论考虑和数学模型。事实上,按黑洞的定义,即使我们非常靠近黑洞来进行观测(这是做不到的),我们不能从外部世界观测到黑洞的内部,也永远不可能知道它里面发生什么情况。然而,首先用来预言黑洞存在的相对论,也可以用来预言宇航员在掉进黑洞时的经历。下面便是这种理论推测的大致情况。
1700906957
1700906958 黑洞的表面实际上只是一种数学图象,那里没有真正的一层“膜”,而只是一无所有的空间。那位下落中的宇航员在进入黑洞时,看不到任何在物理学意义上特别与众不同的情景。但是,这个表面确实有着某种引人注目的物理学含义。黑洞内部的引力非常强,能俘获光,也就是把向外跑的光子重新拉回来,这意味着光无法逃离黑洞。黑洞之所以从外面看上去是黑的就是这个原因。因为没有一种物体或者信息可以比光跑得更快,所以任何东西一旦进入黑洞就没法逃出去。黑洞内所发生的事件对外部观测者来说永远是个秘密。因此,黑洞的表面被称作“事件视界”,因为它把从远处可以目睹的外部事件与不可目睹的内部事件分隔开来了。但是,这个效应仅是事情的一个方面。当宇航员进入事件视界以内的区域,他仍然可以看到外部世界,尽管在外面的任何入永远也不能再见到他。
1700906959
1700906960 当宇航员越来越深入黑洞时,引力场变得更强了。有一种效应使他的身体变形。如果他下落时脚在前面,那么他的双脚就比他的头更接近黑洞中心,因而脚所处的引力更强些。结果、他的脚所受到的往下拉的力会比头部更利害,这样一来他就拉长了。与此同时,他的双肩会沿着向中心会聚的方向拉向黑洞中心,所以他的两边便要受到侧向的挤压。这种拉长和挤压的过程有时称作拉面过程( Spagehitiffication )。
1700906961
1700906962 理论研究表明,在黑洞中心引力的增强是没有上限的。因为引力场表现为时空的弯曲,或者说翘曲,所以随着引力的不断增强,时空扭曲也就无止境地越来越利害。数学家把这种特征称作时空奇点。它代表空间相时间的边界(或者说边缘),穿过这个边界,正常的时空概念不再连续。许多物理学家相信,黑洞内的这个时空奇点名副其实地代表了空间和时间的终结,与它相遇的任何物质将会完全湮没。如果情况确实如此,那么组成宇航员身体的原子其至会在 1 纳秒的超级拉面过程中在这个奇点内化为乌有。
1700906963
1700906964 要是黑洞的质量为 1000 万个太阳质量,即与银河系中心可能存在的黑洞质量差不多,那么,这位宇航员从事件视界向湮没奇点下落所经历的时间大约为 3 分钟。这最后的 3 分钟会是很不舒服的。实际上,早在到达奇点之前,拉面过程就已把这个不幸的人杀死了。在这最后阶段,他是无论如何也见不到那个即将完全毁灭他的奇点的,因为光不可能从奇点逃逐出来。只有一个太阳质量的黑洞其直径大约为 1 公里,对于这样黑洞,从事件视界到奇点的旅程只需要几微秒。
1700906965
1700906966 虽然从这位下落宇航员的参考系来看,毁灭前的时间只是一瞬间,但从远处来看,黑洞的时间扭曲使得宇航员最后的旅程表现为一种慢动作。当宇航员接近事件视界时,在他附近事件发生的过程对遥远的观测者来说似乎变得越来越慢。事实上,宇航员似乎必须要经过无限长的时间才能到达事件视界。所以,宇航员仅仅在一阵疾驰中便经历了相当于外部宇宙中无穷无尽的时间,就这个意义上说,黑洞是通往宇宙尽头的门槛,是一条宇宙死胡同,它代表了再也没有通路的最终实体。黑洞是包含了时间尽头的狭小空间区域。谁要是对宇宙尽头感到好奇的话,只要跳进一个黑洞就可以得到亲身体验了。
1700906967
1700906968 虽然引力是自然界最微弱的力,但是它在不知不觉中累积起来的作用不仅决定了单个天体,而且也决定了整个宇宙的最终命运。压碎恒星的那种残酷无情的吸引力,同样作用在尺度要比恒星大得多的整个宇宙上。这种万有引力的结局完全取决于产生引力的物质总量。为此,我们必须称出宇宙的重量。
1700906969
1700906970
1700906971
1700906972
1700906973 宇宙的最后三分钟 [:1700906554]
1700906974 宇宙的最后三分钟 第六章 给宇宙过磅
1700906975
1700906976 人们常说有上必有下。引力对抛向天空的物体所起的作用是要阻止物体的飞行,并把它拉回地球。但是,事情并不总是如此。如果物体的运动速度足够快,就可以完全摆脱地球的引力,结果它就能飞入太空而永不返回。发射行星际空间飞船的火箭就能达到这么高的速度。
1700906977
1700906978 临界“逃逸速度”大约为每秒 11.2 公里(每小时 4 万公里),这相当于协和式飞机速度的 20 倍以上。临界速度可以从地球的质量(地球所包含的物质的数量)和半径导出。对一定质量的物体来说,直径越小,表面引力越大。脱离太阳系意味着要克服太阳的引力。太阳的逃逸速度为每秒 16.7 公里。想要脱离银河系向外逃逸就得有每秒几百公里的速度。在另一个极端,如对于中子星一类致密天体,逃逸速度为每秒几万公里,而对黑洞来说逃逸速度就是光速(每秒 30 万公里)。
1700906979
1700906980 脱离宇宙的速度有多大呢?在第二章中我已指出,宇宙看来没有边界,也就无从逃离。不过要是我们暂且假定有这样的边界,而且它处于我们的观测极限处(约离我们 150 亿光年),那么,逃逸速度大约要达到光速。这是一个极有意义的结果。因为大多数遥远的星系看上去正在以接近光的速度远离我们退行,要是就取这个数值,那么星系看上去正在以很高的速度向远处运动,因而实际上它们恰好可以“逃离”宇宙,或者至少它们是在相互远离,并且“永不返回”。
1700906981
1700906982 事实上,膨胀宇宙尽管没有十分明确的边界,它的行为却同地球上抛起的物体十分类似、如果膨胀速度足够大,退行中的星系就会克服宇宙中所有其他物质的总引力而逃逸出去,于是膨胀将会永远持续下去。另一方面,如果膨胀速度太低,膨胀最终会停下来。接着宇宙便开始收缩。那时,星系将再次“掉回来”。随着整个宇宙的坍缩,按理而来的便是宇宙的最后一次大灾难。上述两种景象中我们面临的是哪一种呢?答案取决于两个数字的较量。一方面是膨胀速度,另一方面是宇宙的总引力,后者实际上就是宇宙的重量。吸引力越大,宇宙必须膨胀得越快才能将之克服。天文学家可以直接从红移效应对第一个量加以测定。我在第一章中已经解释过,这个答案仍然存在某种争议,所以在撰写本书之时保守—点说,现在所知道的数值可能有上下 1 倍的误差。但是,第二个量的问题就要大得多了。
1700906983
1700906984 怎样称出宇宙的重量呢?这个问题看上去令人束手无策。很清楚,我们不可能直接做到这一点。然而,我们也许能借助引力理论来推算出它的重量。要得出这个值的下限并不难。从太阳对行星的引力可以称出太阳的重量。我们知道,银河系包含大约 1000 亿颗其质量类似太阳质量的恒星,这就大致给出了星系质量的下限值。现在我们可以估计宇宙中一共有多少个星系。把它们逐个累加起来是不可能的,因为数目太大了。但是,一种合理的估计是 100 亿个。于是就得出总重量为 1021 太阳质量,或者说约 1048 吨。只要知道这个星系超级大家庭的半径,我们便可计算宇宙逃逸速度的极小值:答案是约为光速的百分之一。由此我们可以得出这样的结论:如果宇宙的重量仅仅来自恒星,它便可以解脱自身引力的束缚,永恒地持续膨胀下去。
1700906985
1700906986 许多科学家对此确信无疑,但不是所有的天文学家和宇宙学家都相信这样求和的办法是正确的。我们看到的物质同实际存在的物质相比,显然估计过低,因为宇宙中的天体并不都是发光的。诸如暗星、行星和黑洞一类的暗天体,大多数我们都没有注意到。更有大量的尘埃和气体,它们绝大部分都难以察觉。此外,也难以想象星际空间完全空无一物,那里也许有大量稀薄的气体存在。
1700906987
1700906988 然而,这几年来一种更有吸引力的可能性激起了天文学家的浓厚兴趣。宇宙起源于大爆炸,而大爆炸不仅是我们所看到的一切物质的本源,也是我们现在看不到的许多物质的本源。如果宇宙最初是一种灼热的亚原子粒子汤,那么除了人们所熟悉的电子、质子和中子(它们构成了你、我以及我们周围的其他普通东西)之外,也必然生成过粒子物理学家最近才在实验室内识别出来的所有其他各种粒子,而且数量很大。人们发现这些其他种类粒子中的大多数是很不稳定的,很快就发生衰变,但有一些也许便作为原初宇宙的遗骸而留存在今天的宇宙中。
1700906989
1700906990 在这些遗骸中主要是中微子,现已证实这种幽灵般的粒子在超新星中极为重要(见第四章)。据我们迄今所知,中微子不能衰变成任何别的东西(实际上,有 3 种不同类型的中微子,它们之间也许能相互转变,不过这里我们不考虑这种复杂情况)。因此成们认为宇宙应当沉浸在大爆炸留下的宇宙中微子海洋中。只要假定大爆炸的能量对所有各类亚原子粒子均分,就能计算出总共应有多少个宇宙中微子。由此,得出的结果是大约每立方厘米空间有 100 万个中微子,或者说每立方分米约有 10 亿个中微子。
1700906991
1700906992 我始终对这个惊人的结果极感兴趣。在任意给定的时刻,你的身体里就有大约 1000 亿个中微子,它们几乎全是大爆炸的遗骸,并且自最初存在的 1 毫秒以来就保存了下来,而且基本上没有受到任何破坏。因为中微子以光速或接近光速的速度运动,它们闪电般地穿过你,结果每秒钟就有 1 万亿亿个中微子穿透你的身体。由于中微子与普通物质间的作用极为微弱,完全可以忽略不计,因此这种不停顿的侵袭丝毫不为我们所察觉,而且在你的一生中甚至可能没有一个中微子会留在你的身体里。尽管如此,在看上去似乎空无一物的宇宙空间里有这么多中微子存在,这对宇宙的最终命运具有深远的影响。
1700906993
[ 上一页 ]  [ :1.700906944e+09 ]  [ 下一页 ]