1700907006
值得注意的是,也许有可能通过弱相互作用重粒子与普通物质相互作用的方式来直接检验这类粒子的存在。这种相互作用预期是很弱的,但由于弱相互作用重粒子的质量较大,这使它们能有比较大的活力。英国科学家已在英格兰东北的一座盐矿里设计了一项实验,以期发现通过那儿的弱相互作用重粒子。假定宇宙中充满弱相互作用重粒子,那么任何时到都会有数量极大的这类粒子穿过我们身体(还有地球)。这项实验的目标是令人吃惊的:要探测出一个弱相互作用重粒子击中原子核时所发出的声音!
1700907007
1700907008
实验用仪器由放在致冷系统中的锗晶体或硅晶体组成。如果有一个弱相互作用重粒子击中晶体内的一个原子核并与之相互作用,它的动量便会引起原子核的反冲。这种突如其来的冲击产生一种很弱的声波,也就是晶体振动。随着波向外传播,它会衰减下来并转变成热能。这项实验的设计就是要探测与这种衰减声波联系在一起的极小的热脉冲。由于晶体冷却到接近绝对零度,探测器对注入的任何热能极为敏感。
1700907009
1700907010
理论学家猜想,银河系沉浸在一大群呈团块状而运动又较为缓慢的弱相互作用重粒子之中,粒子的质量介于 1 个质子质量到 1000 个质子质量之间。当太阳系在银河系中作轨道运动时,会扫过这种看不见的海洋。如果粒子的典型速度为每秒几千公里,那么地球上每 l 千克物质每天所能散射的粒子数可多达 1000 个。如果这正是事件的发生率,弱相互作用重粒子的直接探测应当是可行的。
1700907011
1700907012
在继续设法猎取弱相互作用重粒子的同时,天文学家也正在着手处理宇宙称重的问题。一个天体即使看不见(或听不到),它的引力效应仍然会表现出来。例如,天文学家由于察觉土星轨道受到一未知引力源的扰动而发现了海王星。绕亮星天狼星转动的暗白矮星天狼 B 也是通过这条途径发现的。因此,只要监视可见天体的运动状况,天文学家也可以建立起任何不可见物质的图象(我已经说明了这种方法如何使人们猜测到天鹅 X-1 中可能有黑洞存在)。
1700907013
1700907014
最近一、二十年间,人们仔细研究了银河系内恒星运动的方式。银河系并不是静止的,而是在缓慢地转动。恒星绕银心转动的典型时间尺度超过 2 亿年。银河系的形状很像一个盘子,银心附近聚集着大量的恒星,银盘里包含了更多的恒星、气体和尘埃。因此,粗略地说情况同太阳系相类似,后者是行星绕太阳旋转。在太阳系内,水星和金星这类内行星比土星和海王星这类外行星要转得快,这是因为内行星受到的太阳引力更强。你也许会以为这个规律也适用于银河系,即银盘外部区域恒星的运动速度应比银盘中央的恒星要慢得多。
1700907015
1700907016
然而观测结果并非如此。在整个银盘内恒星的运动速度大致相同,其解释只能是银河系的质量毕竟不是都集聚于其中央,而是一定程度上表现为平均分市。因此,看上去银河系质量好像集中在中央这一事实表明发光物质仅仅反映了部分实际情况。很明显,存在大量的暗物质或不可见物质,它们中的大部分分布在银盘的外围,从而加快了这部分区域内恒星的运动速度。甚至很可能暗物质的主要部分分布在发光银盘可见边缘之外以及银道面外侧,它们以一种不可见的大质量晕的形式包围着银河系,并延伸至遥远的星际空间。在其他星系中也观测到了类似的运动图像。要是用太阳的质量和亮度间的关系,从星系可见区域的亮度可以推算出它的质量;而测量表明,平均来说显示的质量比它们亮度所反映的质量大 10 倍以上,在最外部区域甚至高达5000倍。
1700907017
1700907018
对星系团内全部星系运动状况的研究也得出了相同的结论。很清楚,如果星系运动得足够决,它将会摆脱星系团的引力束缚。如果团内所有星系的运动都这样快,这个星系团便会很快瓦解,后发座内有一个由几百个星系组成的典型星系团,人们已经对它作过深入细致的研究。后发团星系的平均速度实在太大了,以致这个星系团无法长期存在,除非那里要有比亮物质质量至少多 300 倍的物质。因为一个典型星系穿越后发星系团只要花 10 亿年左有的时间,所以到现在为止已有充足的时间使这个星系团瓦解。但这种情况并没有发生,星系团的结构从各个方面给人的印象表明它是一个引力束缚系统。很明显,那儿存在某种形式的暗物质,而且数量很大,正是这些暗物质影响了星系的运动。
1700907019
1700907020
对宇宙更大尺度结构的仔细研究进一步说明了可能存在着不可见物质。这种结构是以星系团和超星系团集结在一起的方式出现的。我在第三章中已经提到,星系分方的方式使人想起泡沫,它们成串排列,形成纤维结构,或蔓延开来形成巨大的薄片。它们包围着一些硕大无朋的巨洞。如果没有暗物质的额外引力作用,这样一种泡沫状的成团结构在自大爆炸以来的这段时间内是不可能出现的。但是,直到撰写本书之时,还无法借助任何简单形式的暗物质,通过计算机模拟来产生观测到的泡沫结构,这可能意味着需要某种复杂的混合型暗物质。
1700907021
1700907022
最近,科学界的注意力集中在用一些奇异的亚原子粒子作为暗物质的候选者。但是,暗物质以较为常见的形式存在也是可能的,如行星尺度的物质或者暗桓星。这类暗天体可能数量非常之大,它们在我们周围的太空中漫游,只是我们对这一事实毫无察觉且不以为然。近来,天文学家找到了一种方法,它能揭示没有受可见天体引力束缚的暗天体的存在。这种方法利用了爱因斯坦广义相对论所得出的一项结果,这就是引力透镜。
1700907023
1700907024
这种思想基于引力可使光线发生弯曲这一事实。爱因斯坦预言,如果一束星光从太阳附近通过,它就会发生少量的弯曲,导致恒星在天空中的视位置发生位移。在同一天体附近有无太阳的情况下,比较这颗恒星的位置就可检验这个预言。1919 年,阿瑟·爱丁顿( Arthur Eddington )首先做了这种检验,并出色地证实了爱因斯坦的预言。
1700907025
1700907026
1700907027
1700907028
1700907029
图 6-1 引力透镜 大质量天体(图中用一个球表示)的引力使远方光源 S 射来的光线发生弯曲。在适当的条件下这个作用会产生聚焦效应。焦点上的观测者会看到天体周围出现一个光圈。
1700907030
1700907031
引力透镜同样使光线发生弯曲,这样可以使光线聚焦而成像。如果某个引力天体对称性很好,它就能起到透镜的作用,可以使逐远光源射来的光线聚焦。图 6-1 表明了这种情况。从源 S 来的光线落到球形天体上,天体的引力使它周围的光线弯曲,并把光线引向另一侧的焦点。这种弯曲效应对多数天体而言是很微弱的,但在天文学距离尺度上,即使光在路途中发生微小的弯曲最终也会产生一个焦点。如果这个天体位于地球和遥远的 S 源之间,那么这一效应会使 S 的像大大地增亮,或在一些特殊情况下视线方向恰到好处,便会表现为一个明亮的光圈,称为爱因斯坦圈。对形状比较复杂的天体,透镜效应很可能会产生多重像,而不是单一的聚焦像。天文学家在宇宙学尺度上已经发现若干个与大质量星系有关的引力透镜,它使遥远的类星体形成多重像。此外还发现了一些因透镜作用由类星体形成的光弧和完整的光圈。这种情况的出现是因为居间星系同类星体差不多恰好位于同一视线方向上。
1700907032
1700907033
对于暗行星和低光度白矮星,如果它们恰好位于地球和某颗恒星之间,就应当出现透镜效应,而天文学家便可搜索能揭示这种效应的信号。当暗天体穿过视线时,恒星像的亮度会以一种特有的方式表现出时强时弱的变化。虽然天体本身还是没能看见,但是,从透镜效应可以推断它的存在。一些天文学家正在试图用这种技术来搜索银晕中的暗天体。尽管与遥远的恒星恰好位于同一视线方向上的概率非常非常小,但如果在那里有足够多的暗天体,就应当能观测到引力透镜效应。
1700907034
1700907035
黑洞也会起到引力透镜的作用,这方面已经做了广泛的搜索,以利用河外射电源(透镜对射电波的作用方式与光波相同)来确定黑洞个数的范围。结果发现可能的候选天体为数甚少,由此给人以这样的印象:用恒星或星系级质量的黑洞来解释存在大量暗物质是不大可能的。
1700907036
1700907037
但是,并非所有的黑洞都会在透镜效应普查工作中显示出来。很可能大爆炸后不久,早期宇宙盛行的极端条件有利于微黑洞的形成,它们也许不会比原子核大。这种天体的质量应当等于一颗小行星的质量。许多质量可以以这种形式隐藏起来,它们遍布于整个宇宙,而我们却观测不到。令人惊讶的是,甚至有可能通过观测来确定这些怪异实体的数量范围,其理由涉及称为霍金效应的一种现象,我将在第七章中对此作出解释。简单地说,微黑洞的爆发可能表现为一阵荷电粒子雨,爆发是在经历一段确定的时间之后发生的,而时间的长短则取决于黑洞的大小:黑洞越小,爆发得越早。小行星质量的黑体将在 100 亿年后爆发,也就是说大约就发生在今天。这种爆发的一个效应是要产生突发性的射电脉冲,对此射电天文学家一直在进行检测。因为连一个有希望的脉冲也没有探测到,由此得出的结论是,每立方光年空间每 300 万年只能发生一次爆发。这意味着至少就小行星质量大小的微黑洞而言,它们只占宇宙质量的很小一部分。
1700907038
1700907039
总的来说,不同天文学家所估计的宇宙暗物质数量各不相同。可能的情况是,暗物质与发光物质的质量比至少为 10 比 1 ,有时也援引 100 比 1 这类比值。令人吃惊的是,天文学家居然不知道宇宙主要由什么东西组成。他们长期以来认为宇宙的主要成分是恒星,结果发现恒星只占了宇宙总质量中相当小的一部分。
1700907040
1700907041
对宇宙学家来说,关键问题是有没有足够的暗物质能阻止宇宙膨胀。如果能够的话,暗物质的数量与可见物质之比必定更接近 100 倍而不是只有 10 倍。虽然实际情况或许恰恰如此,但这毕竟只是一个纸面上的数值。由于宇宙的最终命运完全取决于这一答案,因而人们寄希望于对暗物质的搜寻会很快给出孰是孰非的明确答案。
1700907042
1700907043
与此同时,一些理论学家相信,只要通过计算就有可能估计宇宙的重量,而无需直接进行困难重重的观测工作。有一种传统信念认为,人类仅仅依靠合理推理的能力便有可能对宇宙的奥秘作出预测,这可以追溯到古希腊哲学家。在科学时代,有些宇宙学家一直企图根据一套深奥的原理,系统地导出一些数学公式,从这些公式应当可以得出数值确定的宇宙的质量。特别诱惑人的那些体系就是根据某种数灵学公式来确定宇宙中粒子准确数目的。这种学究式的冥思苦想一直没有得到大多数科学家的赞同,虽然它们也许很有诱惑力。但是,近年来开始流行一种比较令人信服的理论,因为它对宇宙质量作出了某种明确的预言。这就是第三章讨论过的暴胀演化图象。正如前面所解释的那样,暴胀理论有一项预言涉及宇宙的膨胀速度,其结论接近于观测值。事实上,这项预言比观测值更精确。暴胀相的效应会把宇宙恰好推到临界膨胀速度,结果宇宙正好摆脱自己的引力,并永恒膨胀下去。因此,暴胀理论预言,宇宙所包含的恰好就是临界物质重量,而宇宙便处于继续膨胀和重返坍缩的分界线上。
1700907044
1700907045
就今天的知识水平而言,我们还无法断定宇宙会不会永远膨胀下去。如果它再次收缩,问题便在于这将会在什么时候发生。答案完全取决于宇宙重量超过临界重量究竟有多少。如果超过百分之一,那么在大约 1 万亿年后宇宙将再次收缩;如果超过百分之十,收缩会提早到 1000 亿年后发生。
1700907046
1700907047
如果暴胀理论是正确的话,它同上述问题之间的关系是很有趣的。当然,这种理论的描述是理想化的。严格地说,暴胀相必须延续无限长时间才能达到这个临界值。实际上这个阶段所经历的时间非常短。因此,宇宙的实际质量会比这一临界值稍大一些,或者稍小一些。对前一种情况,坍缩最终总要出现。暴胀理论中很奇怪的一点在于向这个临界值的逼近,是按指数规律极快进行的,这意味着在经过一段极短时间的暴胀之后,宇宙实际上所具有的重量已非常接近这个临界值。因此,宇宙遥远的未来与爆炸后第一秒钟时间内暴胀行为的具体细节有着非常密切的关系。
1700907048
1700907049
为了引入一些数字,可能的情况是暴胀相开始于大爆炸之后仅 10-34 秒。在第三章中我把这段时间称之为一个滴答。暴胀可能延续几百个滴答,然后就结束了。由于时间有限,暴胀必定是不充分的,随后所产生的宇宙其重量非常非常接近而又不完全等于临界值。如果实际重量比临界值来得大,那么经过漫长的岁月,宇宙会再次收缩。
1700907050
1700907051
按指数规律迅速逼近临界值这一事实,意味着宇宙的寿命取决于暴胀相的寿命,而且后者对前者的影响十分敏感。粗略地说,要是暴胀每多坚持一个滴答,宇宙开始再收缩前所经历的时间就会增加 1 倍。因此,譬如说 100 个滴答的暴胀导致宇宙在 1000 亿年后再收缩,那么 101 个滴答会使再收缩发生在 2000 亿年以后,而 110 个滴答的暴胀暗示收缩发生在 102400 亿年以后,依此类推。因为我们对宇宙暴胀是 100 个滴答还是 1000 个滴答一无所知,所以也无法肯定经过多长时间宇宙才开始收缩。但是很明显,这大概总是发生在未来某个很遥远的时刻。除非在数字上出现某种特别的巧合,否则再收缩的时刻应当与我们人类在宇宙中出现并生存下来的时间无关。所以我们可以预料,如果再收缩会发生的话,也只会经过漫长的时间之后才会发生,这段时间是目前宇宙年龄的许多倍。如果情况确实如此(它还取决于暴胀理论所用的方法是正确的),那就是用我们最好的天文观测仪器也无法确定宇宙的重量究竟在临界值的哪一侧。在这种情况下,人类永远不会知道自己所居住的宇宙有着怎样的最终命运。
1700907052
1700907053
1700907054
1700907055
[
上一页 ]
[ :1.700907006e+09 ]
[
下一页 ]