1700912196
1700912197
当你躺在那个小岛海滩上,开始你进入外太空的旅行之前,你是如何判断夜空里的某颗星星离你近,而另一颗离你远的?只看亮度显然是不够的。恒星们个头不同,各种大小都有,因此它们的亮度也有着巨大差别。在地球上看到的一颗明亮的恒星,可能体形巨大而距离遥远,或体积小一些却离得很近。我们显然还需要一些别的手段才行,历史上的科学家们想出了三种不同的方法来估算宇宙距离。
1700912198
1700912199
第一种方法适用于各种天体,包括恒星或行星,只要它们离我们不是太远。这是三种方法中最简单的一种,而且依赖常识(这里没有量子效应参合,所以使用常识还是允许的)。想象你坐在行驶于高速路上的车里,透过侧面车窗看向两边的树木。离你车近的树很快经过,而离得远的那些则以慢许多的速度移动。高耸在远处地平线上的山脉看上去就像根本没有动。它们可以被看成是固定的背景。在太空里,我们可以利用同样的原理。当地球绕着太阳转动时,那些离地球近的物体相对于非常远的看上去固定不动的恒星背景有着相当明显的移动。通过测量某一天体因地球围绕太阳运动相对于远处背景所发生的位置变化,科学家们就能估算该天体与地球之间的距离。它所牵涉到的几何学早在二千二百年前的欧几里得就已经知道了。对于短距离的估算——比如,银河系内的距离,它的效果极好。但对于星系间距离的估算,这个方法就显得力不从心。因为星系们离我们实在太远了。位于地球上,绕着太阳旋转的你,冬天与夏天对于天体的视角差别可达三亿公里,但依然不够。星系们都属于固定背景。要猜出它们的位置,你需要第二号戏法,牵涉到一种非常独特的被称为造父变星的恒星。
1700912200
1700912201
造父变星是一种非常明亮的恒星,而且它们所发出的光会非常规律地在最亮与最暗之间变化。让人难以相信的是,科学家们找到一种方法能够将这种亮度变化的周期与它们所发出的总光量联系起来。而这个信息就足以告诉科学家们那些恒星离我们有多远:就像号角所发出的声响传到我们耳朵中时会随着它从源头走过的距离增加而变轻,光也一样。我们能够收集到的位于远处的造父变星到达地球的光占其总发光量的比例就告诉了我们它们的距离。幸运的是,宇宙里有许多造父变星。
1700912202
1700912203
但这个戏法依然有着自己的局限性:要测量宇宙中最远的距离,单个的造父变星已经不够了,因为就算最强大的望远镜都无法将它们从其所在的恒星群中区分出来。要测量宇宙深处非常遥远的距离,我们还需要第三种戏法。
1700912204
1700912205
你或许还记得,在本书的第二部分,美国天文学家埃德温·哈勃所进行的研究。在二十世纪二十年代,哈勃成为第一个注意到宇宙在膨胀、远处的星系都在离我们而去的人。你的一些朋友在地球各地用你买给他们的价值十亿美元的望远镜观察夜空,好心地替你验证了这个结论。
1700912206
1700912207
在二十世纪二十年代,哈勃用来自远处星系的造父变星的光线颜色移动来计算它们的速度,而且他还发现它们一心离我们而去的意念强度(速度)与它们离我们的距离成正比:若一个星系离我们的距离是另一个星系离我们距离的两倍,那么前者的退行速度也是后者的两倍。这条定律现在被称为哈勃定律。
1700912208
1700912209
第三个戏法就是,当造父变星无法从它们的环境中被分离出来时,我们就反过来使用哈勃定律。通过测量从远处星系们传来的光线颜色变化程度,科学家们就能判断出这些光线在我们的宇宙中膨胀了多久,利用这个信息,也就有可能知道这些星系离我们有多远。
1700912210
1700912211
哈勃定律足够简单,而且它与已知现实吻合得很好:空间与时间早在几十亿年前就已变成今天这样,时空的膨胀从一开始就一直进行,并且看起来作为能量被激烈释放(大爆炸)的结果也非常合理,在随后的几十亿年里,宇宙膨胀的速度也已经慢了下来。
1700912212
1700912213
在这个相当符合逻辑的系统里,一切都很完美。
1700912214
1700912215
除了它不符合你所观察到的事实。
1700912216
1700912217
你的眼睛刚才看到的光脉冲就与它不合。它们颜色漂移的程度不符合上面所描述的宏大、漂亮、自洽的图景。有什么地方出了问题,第二号谜团隐隐约约就在这里游荡。
1700912218
1700912219
要想搞明白这到底是怎么回事,让我们再去旅行一小会儿,去看看到底是什么引发了那射入你眼中的无比强大的光脉冲。
1700912220
1700912221
1700912222
1700912223
从银河系上方出发,你飞向一个特别美丽而多彩的漩涡状星系,它离你大约有八十亿光年之远。你穿过那横亘在我们自己的宇宙大家庭银河系与这一个光岛之间无比巨大而且还在不断膨胀中的空间。当你到达它附近时,选择从侧面进入。你飞过属于它的几百万颗恒星,穿过比几千个太阳系的大小合在一起还大的星云,突然,你再次停了下来。
1700912224
1700912225
就在你的眼前,不是一个,而是两个闪亮着的天体,吸引了你的注意。它们彼此围绕着转动,非常快,而且不怎么对称。两者中的一个家伙是一颗巨大的红色愤怒火球。另一颗也很亮,但却小了太多太多。它的大小只和地球相仿,却亮得发白。不要被你所看到的大小所迷惑。虽然两者的大小有着巨大不同,但那颗微小的星球才是这里的主宰,而不是那个红巨星。那个小小的白色圆球是在你到达前几亿年就发生爆炸的恒星所留下来的内核遗骸。当一颗恒星死亡时,它将自己的外层朝着各个方向抛入太空,但内核则被压缩变成现在在你眼前发光的新的星体。它的名字叫白矮星。它是一个极为致密和炽热的天体。通常情况下的白矮星需要几千万年时间冷却褪色,最终成为寒冷孤独的太空流浪者。然而,这一颗,却替自己选择了一条完全不同的道路。
1700912226
1700912227
给你一个白矮星密度的大致概念吧,让我们用不同的材料做一只棒球。一个普通的棒球,用橡胶、皮革和空气做成,大约重145克。同样的体积,如果材料是铅,这只棒球的重量将是大约2.3公斤。如果使用的是地球上自然存在的最致密元素——锇——这只棒球就又重了一倍:大概4.5公斤。
1700912228
1700912229
现在,用来自白矮星的材料做这只棒球,你的棒球将重二百吨。在极端致密的王国中,白矮星排名第三,仅落后于中子星(它被取了这个名字是因为它只含有中子)与黑洞。所以你或许猜测它们都正进行着非常猛烈的核聚变,就像在恒星内核中一样,但事实并非如此,除非它们能够找到办法不停生长。事实上,白矮星只有在它们的质量小于太阳质量的140%的情况下才能保持自己的白矮星身份。
1700912230
1700912231
但这颗白矮星有东西“吃”。一颗恒星。一颗红巨星。
1700912232
1700912233
那颗红巨星正被活活吃掉,就发生在你眼前。
1700912234
1700912235
白矮星巨大的密度带来的强大引力远胜于红巨星自身,这颗恒星注定难逃厄运。它都无法保住自己的外层。在围绕着白矮星转动时,红巨星自己的表面被撕开,形成一长条明亮炽热燃烧着的等离子尾巴,在你眼睁睁的注视下向着它贪婪的舞伴盘旋而去,形成一条闪亮扭曲的宇宙大河蜿蜒流向白矮星的表面,在那里,它被收获并压缩。
1700912236
1700912237
这个过程牵涉到巨大的能量。时空本身就能感受到:就像在湖表面互相围绕转动的小船之间产生的水波一样,红巨星与白矮星之间的舞蹈也引起巨大的引力波,在时空这一宇宙构造本身中波动与传播,冲刷着周围的天体,改变着时间与空间。
1700912238
1700912239
你看着那颗体积巨大的恒星越来越多的物质掉落到白矮星的表面,明显感觉到某些不同寻常的事就要发生。你是对的。白矮星的确收获了许多质量,到达了太阳质量的140%,一个质量门槛。越过这个门槛之后,白矮星自己内核的压力突然大到以一种新的剧烈到超乎想象的链式反应,给自己带来了非凡的死亡。一眨眼间,它炸了开来。这种爆炸所发出的亮度超过太阳五十亿倍。真是让人印象深刻的告别演出。
1700912240
1700912241
这种爆炸形成了所谓的Ia型超新星。在所有星系中,它所发生的频率都是大概一百年一次。对于我们来说,它们是一种非常方便的工具,因为它们都很相似,甚至一模一样:它们的发生总是在一颗白矮星吞噬另一颗恒星后质量超过了太阳质量的140%,因此它们永远放射出同样亮度的光——五十亿个太阳所发出的光被合并在一个不比我们地球大多少的小点上。它可比造父变星亮多了。这个特点让它们成为照亮我们宇宙最远处的理想的蜡烛,我们可以借此验证哈勃的膨胀定律。
1700912242
1700912243
Ia型超新星比其他一切天体都亮许多,因此与造父变星不同,人造的望远镜能将它们从遥远的星系中分离出来。知道了它们真正的亮度,就像利用造父变星的原理一样,科学家们就能推测出它们离我们的距离,以及它们离我们远去的速度。
1700912244
1700912245
一九九八年,两组独立的科学家研究了这种遥远的超新星并且发表了他们的研究结果。其中一组由美国天体物理学家萨尔·波尔马特(Saul Perlmutter)带领,另一组由美国天体物理学家布莱恩·施密特(Brian Schmidt)与亚当·里斯(Adam Riess)带领。两组科学家们都发现大约五十亿年前,在经过了大约八十亿年的正常行为之后,宇宙的膨胀开始加速。
[
上一页 ]
[ :1.700912196e+09 ]
[
下一页 ]