1700916572
1700916573
地球和太阳之间有多远
1700916574
1700916575
那么,太阳距离地球有多远呢?请再次伸出你的小拇指,你会发现,太阳覆盖的角度与月亮差不多,约为0.5°。太阳肯定比月球远多了,因为日全食时,月亮几乎才刚刚能把太阳挡住。那么,太阳到底有多远呢?这取决于它有多大——假如它是月亮的3倍大,它也得是月亮的3倍远,才能覆盖同样大小的角度。
1700916576
1700916577
阿里斯塔克斯在他那个年代可谓顺风顺水,他聪明地解决了这个问题。他意识到,在弦月发生时,太阳、月亮和地球组成了一个直角三角形。此时,我们能看见月球正面正好有一半被太阳照亮(见图1-4)。他估算了一下,此时月亮和太阳之间的角度大约为87°。这样,他知道了这个三角形的形状,以及地球和月亮相连组成的边的长度,于是,他用三角法算出了太阳和地球相连组成的边的长度,这也正是太阳和地球之间的距离。他的结论是:太阳与地球之间的距离,大约比月球到地球间的距离远20倍,所以,它一定比月亮大了20倍。换句话说,太阳可真大啊,直径比地球大了5倍多。洞悉了这一点,阿里斯塔克斯早在天文学家哥白尼之前许多年,就提出了日心说:他认为,太阳比地球大那么多,应该是地球绕着太阳转更合理,而不是太阳绕着地球转。
1700916578
1700916579
这个故事具有很强的启发性,也具有一定的警示性。它不仅告诉我们聪明很重要,还告诫我们,量化我们测量的不确定性有多么重要。在第二点上,古希腊人显然不是很熟练,阿里斯塔克斯也不例外。原来,太阳正好照亮一半月亮的那一刻,并不是那么容易确定的。而且,就算确定了那一刻,月亮和太阳的角度也并不是87°,而是89.85°,和直角相差无几。这样一来,图1-4中那个三角形会变得特别细长:实际上,太阳与地球之间的距离差不多是阿里斯塔克斯估算出来的20倍远,直径也比地球大109倍——所以,你可以在太阳里装进100多万个地球。不过,这个错误直到2 000年后才被纠正。2 000年后,哥白尼更加聪慧地利用几何学知识,算出了太阳系的大小和形状。他甚至还算出了所有行星轨道的形状和相对大小。但是,他所计算出的太阳系大小仍然是实际大小的1/20——相当于娃娃屋和真实房子的差距。
1700916580
1700916581
1700916582
1700916583
1700916584
图1-4 通过测量弦月与太阳之间的角度,阿里斯塔克斯估算出了太阳与地球之间的距离。(这张图并不是按真实比例绘制的;实际上,太阳比地球大100多倍,也比月亮远400多倍。)
1700916585
1700916586
恒星离我们有多远
1700916587
1700916588
那么,天上的其他恒星呢?它们距离我们有多远呢?它们究竟是什么东西?我认为,这是史上最“悬疑”的侦探故事之一。算出月亮和太阳各自距地球的距离已经令人印象深刻了,但至少它们都有一些现成的线索可以用:月亮和太阳在空中会饶有趣味地来来去去,改变位置,而且它们还有形状和角度可以测量。而其他恒星,要测量它们有多远,听起来简直毫无希望!它们看起来只是夜空中暗淡的小白点,你要瞪大眼睛、仔细地看啊看,结果会发现……它们依然是暗淡的小白点,根本没有可辨认的形状和大小,只是远远的一个小光点。而且,这些恒星好像从来不会移动,除了随着整个星空一起旋转——我们也知道,这并不是星空在旋转,而是地球在旋转所造成的错觉。
1700916589
1700916590
一些古人猜测,那些恒星是漆黑巨球上的一个个小孔,遥远的光从孔里射进来。意大利天文学家、自然科学家布鲁诺则不认同这种观点,他认为其他恒星是和太阳一样的物体,只是太过遥远了,它们甚至可能也有自己的行星和文明——天主教会很不喜欢这个观点,于是,1600年,他们把布鲁诺烧死在了火刑柱上。
1700916591
1700916592
1608年,突然出现了一丝希望的光芒:人类发明了望远镜!伽利略很快对其进行了改进,并用自己设计的最先进的望远镜凝望那些遥远的星星。结果,他看见了……竟然还是暗淡的小白点!一切又回到了起点。我记得,很小的时候,我在祖母的钢琴上弹奏“一闪一闪亮晶晶”。在这首《小星星》首次发表的1806年,里面那句“How I wonder what you are”(究竟何物现奇景)回荡在许多人的脑海里,但却没人真正知道这个问题的答案。
1700916593
1700916594
如果真如布鲁诺所认为的那样,其他恒星只是遥远的太阳,那它们一定比太阳远多了,因为只有异乎寻常的遥远,才会让它们显得如此暗淡。那么,它们距离我们究竟有多远呢?这取决于它们到底有多亮。这也是我们很想知道的问题。在《小星星》发表的32年后,德国数学家、天文学家费里德里希·贝塞尔(Friedrich Bessel)终于在这个“悬案”上有了突破。请你伸直手臂,竖起大拇指,交替闭上左眼和右眼几次。看到了吗?你的大拇指在背景画面中以固定的角度跳来跳去,忽左忽右。接着,移动大拇指,让它离你的眼睛越来越近,你会发现,它跳跃的角度在变大。天文学家把这个跳跃的角度叫作“视差”(parallax)。利用这个视差,你能清楚地算出你的大拇指有多远。你不用担心计算的问题,因为在你不经意间,你的大脑已经帮你算出来了——大脑能根据物体在两只眼睛中的不同角度来判断它的距离,这对深度知觉的形成至关重要,也正是这样的能力让我们能看到三维立体的东西。
1700916595
1700916596
两只眼睛之间的距离越大,我们对遥远物体的深度知觉就越好。在天文学上,我们同样可以利用这种视差的小把戏,假装我们拥有两只距离3 000亿米的眼睛,这正是地球绕太阳旋转的轨道直径。我们能做到这一点,是因为我们能将相隔6个月时间拍摄的望远镜照片进行对比,在这两个时间点,地球位于太阳的两端。贝塞尔就这么做了。结果,他发现,在这两张照片中,尽管大部分恒星的位置几乎都没变化,却有一颗特立独行的恒星:它有一个晦涩的名字叫“天鹅座61”(61Cygni)。这颗恒星移动了一个很小的角度,可以算出从它的距离约是太阳距离的100万倍——这个距离非常之远,它的星光到达地球需要11年,而太阳光到达地球却只需要8分钟。
1700916597
1700916598
不久以后,又有一些恒星的视差被测量出来,这样,我们终于知道了这些暗淡小白点的距离!这是如何计算出来的呢?在夜晚,当一辆车离你远去时,你会发现尾灯的亮度与距离的平方成反比(也就是说,离你2倍远时,亮度下降4倍)。关于天鹅座61,由于贝塞尔知道了它的距离,利用这个平方反比的关系,他计算出了它的亮度。他的结果是,天鹅座61的亮度与太阳相差无几,也就是说,布鲁诺的观点一直都是正确的!
1700916599
1700916600
差不多在同一时间,采用另一个完全不同的方法,人们又取得了另一个重大突破。1814年,德国眼镜商约瑟夫·冯·弗劳恩霍夫(Joseph von Fraunhofer)发明了一个名为“光谱仪”的装置,它可以根据光的组成,将其分解成彩虹般的色谱,并观察它们精致的细节。他发现,在彩虹般的色带里,有一些神秘的暗条(见图1-5),而这些暗条在光谱中的位置取决于光源的材料,就像光的指纹一样。接下来的几十年里,人们仔细研究和测量了这些光谱,并根据常见的物质对它们进行了分类。用同样的知识,在夜店里,你可以给朋友们玩一个小把戏,通过灯光的颜色来猜测物质的成分,而不用靠过去仔细查看。
1700916601
1700916602
1700916603
1700916604
1700916605
图1-5 我儿子亚历山大拍到的这个彩虹,并不会给我们带来黄金,而更像是一个知识的金矿,告诉我们原子和恒星的运转方式。在第6章,我们将会一起探索,不同颜色的相对强度是因为光是由微小的粒子(光子)组成的。那些暗条的位置和强度也可以用量子力学中的薛定谔方程计算出来。
1700916606
1700916607
令人们始料不及的是,对太阳光谱的分析证明,太阳这个挂在天边的神秘的炙热圆球,竟然是由地球上常见的元素组成的,比如氢元素。并且,用光谱仪分析望远镜看到的星光后,人们发现其他所有恒星的成分和太阳几乎完全一样,都是由一些气体元素混合而成!这再一次证明了布鲁诺是正确的:其他恒星的确就像是遥远的太阳,不管从释放的能量还是从组成的成分来看,都是如此。因此,短短几十年里,恒星们从神秘莫测的小白点,变成了燃烧着炽热气体的巨球,我们甚至可以测量出它们的化学成分。
1700916608
1700916609
光谱,就是天文学家的金矿。每次你认为自己已经了解了它的所有秘密时,它都还会用更多神秘的线索来证明你的肤浅。比如,光谱能让你测量出一个物体的温度,而不用温度计去接触它。不用摸,你就知道一块烧白的铁比烧红的铁更烫。同样,白色的恒星比红色的恒星更加炙热。通过光谱仪,你能精确地测量出它的温度。然而,这并不是光谱能告诉我们的全部:通过光谱信息,你还能知道一颗恒星的大小。这很像做填字游戏,填出一个词就能暗示出下一个词。那么,通过温度如何能得知恒星的大小呢?秘诀在于,温度可以告诉我们恒星表面每平方米释放出多少光。如果算出恒星总共发出了多少光(通过它的距离和视亮度),你就能算出恒星的表面积,也就能算出它的大小了。
1700916610
1700916611
这还不够。恒星光谱中还暗藏着关于它运动的线索。随着恒星的运动,光线的频率(也就是光的颜色)会发生轻微的偏移,这被称为“多普勒效应”。想感受一下多普勒效应,就去听听马路上的汽车吧:当汽车靠近你时,声音的频率会变高;当它们飞驰而去时,声音又会变低。和我们的太阳不同,许多恒星都有一颗伴星,它们处于稳定的双边关系,组成一个双星系统,绕着对方规律地旋转,就像在跳圆舞曲。这种恒星圆舞曲也会表现出多普勒效应,使得它们的光谱周而复始地移来移去,每转一圈就循环一次。光谱移动的大小,暗示着它们运动的速度。通过观测,我们有时还能测量出双星之间的距离。将这些信息汇集在一起,我们就能使出大招了:不通过天秤就能称出恒星的重量。我们的秘诀就是牛顿运动定律和万有引力定律,根据观测到的轨道,计算出质量。有时,多普勒效应甚至能告诉我们,某些恒星周围竟然也有行星在绕着它们旋转。当一颗行星运行到恒星前方时,恒星的亮度会轻微地降低,这能让我们算出行星的大小;而光谱中的细微变化则能告诉我们这颗行星是否有大气层,甚至能告诉我们大气层的成分。光谱线就像是一个神奇的礼品盒,可以不停地从中掏出神奇的礼物。比如,如果我们知道一颗恒星的温度,那测量光谱线的宽度就能算出它的气压;测量光谱线分裂成多少邻近的支线,我们就能算出它表面的磁场有多强。
1700916612
1700916613
总之,恒星发出的暗淡光线中,隐藏着数不尽的秘密。通过精密的测量和分析,我们能解码出它们的距离、大小、质量、成分、温度、压力和磁场,还能知道那里是否也有一个星系类似我们的太阳系。人类竟然能从神秘莫测的小白点中,推导出如此丰富的知识,这实在是一个壮举。我想,史上最厉害的神探夏洛克·福尔摩斯和赫尔克里·波洛(Hercule Poirot),也一定会为我们感到骄傲!
1700916614
1700916615
从百万到十亿再到万亿,不断刷新尺度的星系
1700916616
1700916617
我的祖母西格纳去世时,已有102岁高龄。她离开时,我花了很多时间回忆她的人生。令我惊讶的是,她竟然生长在一个完全不同的宇宙观中。当她上大学时,我们对宇宙的认识仅仅只是太阳系加上它周围的一堆星星。我的祖母和她的朋友或许也曾想过星星有多么遥远、它们的光线到达我们需要很长时间(少则几年,多则上千年)。而如今,我们已经知道,哪怕是距离我们上千光年的星星,也只是我们“宇宙后院”的邻居而已。
1700916618
1700916619
如果祖母的大学里有天文学家,那么他们一定曾辩论过“星云”是什么,这是一种云彩一般的天体,弥散在夜空中,有的还拥有美丽的旋涡,就像凡·高的名画《星夜》(Starry Night)描绘的那样。这究竟是什么东西呢?当时许多天文学家认为,它们只是无聊的宇宙气体云,飘浮在恒星之间。但有的天文学家却持有更激进的观点,认为它们是“岛宇宙”,今天被称为“星系”。这是由恒星组成的庞大集合,由于太过遥远,用望远镜也无法看清每一颗星星,所以呈现出一抹朦胧的光霾。为了解决这个争端,天文学家们需要测量这些星云的距离。那么,用什么方法来测量呢?
1700916620
1700916621
视差测距的方法,对较近的恒星很有效,但在星云上却无计可施:它们太过遥远,视差太小了,根本无法观测。还有什么方法能测量遥远的距离呢?想象一下,如果你用望远镜观察一个遥远的灯泡,发现上面竟然印着“100瓦”的字样,这就好办多了:你只需要利用前面说过的平方反比关系,根据它的视亮度,就能计算出这个灯泡的距离。天文学家把这种拥有固定亮度的物体叫作“标准烛光”(standard candles)。然而,天文学家们沮丧地发现,恒星根本和“标准”二字无缘,它们的亮度千差万别,有的比太阳亮百万倍,有的只是太阳亮度的几千分之一。但是,如果你观察到一颗恒星上标着“4×1026瓦”(这正是太阳的瓦数),你就得到了一个标准烛光,并能算出它的距离,就像那颗灯泡一样。不幸中的万幸,大自然赐予了我们这种标准烛光,它是一种特别的恒星,叫作“造父变星”(Cepheid variables)。造父变星的亮度会随时间来回变化,与此同时,其大小也在发生着周期性的变化。1912年,哈佛大学天文学家汉丽埃塔·勒维特(Henrietta Swan Leavitt)发现,造父变星的脉动频率正像一个瓦特计量器:两次脉动之间间隔的时间越长,它们释放出的光的瓦数就越大。
[
上一页 ]
[ :1.700916572e+09 ]
[
下一页 ]