打字猴:1.70091669e+09
1700916690
1700916691 “我认为太阳系是上帝造出来的。”他班上一位女生说道。
1700916692
1700916693 “但我爸爸说太阳系是一团巨大的分子云造出来的。”菲利普插嘴说。
1700916694
1700916695 “那这团巨大的分子云又是从哪里来的呢?”另一位男孩问。
1700916696
1700916697 “也许是上帝造出了这团分子云,然后这团分子云再造出了我们的太阳系。”第一个女孩说。
1700916698
1700916699 我相信,自从人类直立行走以来,就开始仰望夜空,好奇那些星星从何而来。从古至今,人们都知道,有些事情是可以被理解的,而有些则如秘密般深藏不露、不为人知。比如,我们知道此时此刻正在发生什么,也知道那些与我们密切相关的事情,诸如周遭有何物、早餐吃什么。但是,望向更遥远的地方和更久远的过去,我们仿佛遇到了一块知识的巨石,横亘在路上。巨石之外是无知的世界。在上一章中,我们目睹了人类如何用智慧推着这块巨石往前,将我们对空间的认知逐步扩大——从地球到太阳系,再到星系,最后到达数十亿光年外的宇宙深处。那么现在,让我们开始第二段智慧的探险,一起来看看人类如何推着这块无知的巨石溯流而上,到达时间的源头。
1700916700
1700916701 “月亮为什么不会掉下来呢?”我们用这个问题,来开始这段冒险。
1700916702
1700916703 太阳系制造机:45亿年的引力与压力之战
1700916704
1700916705 直到约400年前,“月亮为什么不会掉下来呢”这个问题看起来还毫无解决的希望。那时候,人们刚通过巧妙的观测,用肉眼可见的线索确定了太阳、月亮、水星、金星、火星、土星和木星的位置。哥白尼、第谷·布拉赫(Tycho Brahe)、约翰尼斯·开普勒(Johannes Kepler)等科学家甚至计算出了这些天体的运动规律——太阳系就像钟表,每个部分都循着完美的圆形轨道,周而复始地运动着,仿佛永无止境。没有迹象表明它有一天会停下来,更不知道它是否始于过去的某一天。那么,太阳系是永续永存的吗?如果不是,它是从哪里来的呢?
1700916706
1700916707 当时市场上卖的钟表,对齿轮、弹簧等部件的工作原理,人们都了如指掌。对一只特定的钟表,人们不仅能预测它的未来,还能推知它的过去。比如,你能准确预测一只手表会按稳定的速度运行下去,但由于摩擦力的存在,如果你不上发条,它就会慢慢停下来。通过分析,你能知道它上个月什么时候上过发条。那么,天体也遵循这样的规律吗?是否也存在某种类似摩擦力的力,影响着它们的运动,最终改变它们的轨迹呢?如果事实果真如此,那我们就能像对待钟表一样,算出它形成的时间和方式。
1700916708
1700916709 答案却似一记响亮的耳光:“不是!”我们已经很了解地球上的物体在空间中的运动,不管是随手扔一个石子,还是古罗马的投石机和发射铁球的大炮,它们的运动轨迹都很容易预测,并且无一例外都会掉落到地面上。然而,天体们却仿佛遵循着与地球上的物体完全不同的定律。比如,如果月亮是天上的一块大石头,为何它不会像其他石块一样掉到地面上呢?经典的回答是:月亮是天堂之物,而天堂之物必然遵循着不同的规律,不受万有引力的影响,所以它不会掉下来。还有一些人进一步解释道:天堂之物之所以与众不同,是因为它们是完美的。不信你看,它们有着完美的球形外表,它们运行的轨迹是完美的圆形——完美的东西才不会掉到不完美的地面上来呢。而地球上处处充斥着不完美:摩擦力会让物体减速,火焰会熄灭,人会死去。而在天堂,物体之间没有摩擦力,太阳不会熄灭,时间一望无垠,没有尽头。
1700916710
1700916711 然而,这种对天堂的美好幻想禁不起推敲。对第谷的观测结果进行分析后,开普勒总结道,行星的轨道并不是圆形,而是被拉长的椭圆形,这可一点也不完美。伽利略用望远镜发现,太阳也并不完美,上面像锈蚀的铁片一样散布着丑陋的黑色斑点;月球就更不用说了,它并不是一个浑圆光滑的完美球体,而是布满了起伏的丘壑和巨大的凹坑。那么,既然月亮并不完美,为什么它不会掉下来呢?
1700916712
1700916713 最后,牛顿终于解决了这个问题,他的想法很简单,但也很激进,那就是:天堂之物遵循着与地球之物完全相同的规律。既然月亮不会像石头一样掉下来,那我们能不能扔出一块石头,也像月亮一样永远不掉下来呢?太阳比地球重多了,扔出的石头为何不会掉到太阳上去呢?牛顿猜想,一定是因为太阳太遥远,万有引力随距离增大而减小。那么,是否能以极快的速度向上抛出一块石头,在引力把它拉回地面之前,就逃脱地球呢?靠牛顿自己的力气肯定不行,但他意识到,如果有一架假想的超级大炮,只要它能给予石头足够的速度,那石头就能逃离地球。正如图2-1所示,水平射出一枚炮弹,它的命运将取决于它的速度——如果它的速度低于某个神奇的值,那它最终将会撞毁在地面上。如果你以越来越快的速度发射炮弹,那它们在坠毁之前所飞行的距离会越来越长。直到你终于到达那个神奇速度,炮弹就不再掉下来,而是保持在固定的高度,以接近正圆的轨道,绕着地球转圈——和月亮一样!在地面上,牛顿用很多东西做过实验,比如石头、苹果等,最终计算出了这个神奇的速度——呼啸而过的每秒7.9公里!
1700916714
1700916715 牛顿认为,如果月球也遵循同样的运动规律,他也能算出它保持圆形轨道所需要的速度。可是有个关键的线索缺失了,即在月球那样遥远的距离,地球的引力会下降到什么程度呢?由于月球以圆形轨道绕地球旋转,每个月转一圈,而这个圆形轨道的半径早已被阿里斯塔克斯算出来了,所以牛顿据此算出了月球的速度——大约每秒1公里,与M16步枪子弹的速度差不多。接下来,牛顿总结出了一个影响深远的结论:假如地球和月球之间的引力与距离的平方成反比,那么,使月球正好绕圆形轨道运行的那个“神奇速度”恰好等于观测到的月球速度!这样,牛顿终于发现了万有引力定律,它放诸四海而皆准,不论在地球上还是天上,都一样。
1700916716
1700916717
1700916718
1700916719
1700916720 图2-1 如果炮弹发射的速度大于每秒11.2公里(D),它就能一飞冲天,逃离地球的引力(忽略空气阻力)。如果速度稍慢一些(C),它将进入椭圆轨道,绕地球旋转。如果发射的速度是每秒7.9公里(B),它的轨道将是一个完美的正圆形。如果速度再低一些(A),炮弹最终将落回地面上。
1700916721
1700916722 一时间,所有谜题都像拼图游戏的碎片一样各自归位。牛顿将万有引力定律与他制定的运动定律结合起来,不仅能解释月亮的运动,还能解释行星绕太阳旋转的运动。他还通过数学推导出,最常见的轨道形状是椭圆形,而不是正圆形,这正是开普勒百思不得其解的问题。
1700916723
1700916724 与所有重大的科学突破一样,牛顿的发现能回答的问题远远超过了那些促使他开始思考的难题。比如,这一定律还能解释潮汐现象——太阳和月亮的万有引力吸引着地球上的海水,但对更近那一面的海水吸引力更大一些,使得海水随地球的自转而被搅动起来。牛顿定律还表明能量是守恒的(在物理学上,守恒的意思是指一成不变),所以如果能量出现在某处,它一定不是从虚无中凭空出现的,一定是从别处而来。潮汐消耗了大量的能量(其中一些被潮力发电站利用),那这些能量来自何处呢?大部分来自地球的自转,所以潮汐的摩擦力使得地球自转变得越来越慢——如果你总觉得一天24小时不够用,没关系,等到两亿年后,地球上的一天将延长到25个小时!
1700916725
1700916726 这说明,摩擦力也会影响天体的运动,摧毁了“太阳系永续永存”的思想——在过去,地球的自转一定比现在快。你还能计算出,今天的地球-月球系统的年龄不会超过40亿~50亿年,否则那时的地球自转速度会超级快,巨大的离心力会将地球撕得粉碎。我们终于对太阳系的起源有了第一个线索!“案发时间”总算出现了一线曙光。
1700916727
1700916728 牛顿的发现为人类思想插上了翅膀,走出了征服空间的第一步。他证明,通过地面上的实验,我们也可以发现物理定律,并能将其推而广之,解释天上发生的事情。尽管牛顿的专长只是万有引力和运动,但他的这种思想实验却像燎原野火一样,逐渐蔓延到了其他领域,比如光、气体、固体、电现象和磁现象。人们展开了大胆的猜测,不仅对肉眼可见的宏观现象,还针对微观现象,将牛顿的运动定律运用于原子,来解释气体等许多物质的性质。一场科学革命拉开了序幕,开启了工业革命和信息时代的大门。反过来,这些进步帮助我们创造出强大的计算机,又帮助我们进一步推动了科学的发展,解开物理方程,回答人们曾百思不得其解的许多有趣问题。
1700916729
1700916730 物理定律可以被运用在很多方面。一般情况下,我们希望能用现状预测未来,比如预报天气;也可以把这些公式反过来,用现状去推演过去,比如重建哥伦布在牙买加看见的月食的具体细节。还有第三种方式是,想象一种假设的条件,运用物理公式推算它随时间的变化趋势,比如,模拟一次目的地为火星的火箭发射,计算它是否能如期到达。运用第三种方法,我们找到了太阳系起源的新线索。
1700916731
1700916732 想象一下,外太空有一团极大的气体云,随着时间的流逝,它会发生什么呢?物理定律认为,它的命运取决于两股力量之间无休止的战役——万有引力和压力,前者想压缩它,而后者则想把它撑大。
1700916733
1700916734 如果引力占了上风,气体云开始压缩,它就会变得越来越热(这就是为什么用气筒给自行车打气时会发热),这个过程反过来又增大了压力,遏制了引力导致的进一步压缩。如果引力和压力势均力敌,相互平衡,这团气体会长时间保持稳定状态。但休战总是短暂的,最终都会被打破。由于温度很高,气体云开始闪耀出光芒,把保持压力的热能辐射出去。于是压力变小,引力又会进一步压缩气体,长此以往地进行下去。
1700916735
1700916736 如果我们将引力和压力的物理定律输入计算机,就能模拟出这场战役的各种细节。最后,密度最大的区域变得无比炙热和致密,变成了一个核聚变反应堆——在那里,氢原子聚变生成氦,同时巨大的引力保护它们不会炸开。此时,一颗恒星诞生了。这颗新生恒星最外层的气体非常炎热,闪耀着令人目眩的光芒。光芒吹散气体云剩下的部分,让它显现在我们望远镜的视野中。
1700916737
1700916738 让我们倒带,重播一下,再从另外一个角度看看刚才的过程。在气体云逐渐压缩时,气体轻微的旋转将会被放大,就像冰上舞者收拢手臂时会转得更快一样,产生巨大的离心力。由于离心力的存在,引力无法将所有气体压缩成一个点。取而代之的是,引力把气体压成了像比萨一样的形状——很像我小时候学校附近的比萨店厨师用手旋转比萨面饼,让它变扁平一样。这个“宇宙比萨”的主要成分是氢气和氦气。但是,如果配料表中还包括一些更重的元素,比如碳、氧和硅,那么,在中心生成炙热恒星的同时,外层物质将会形成一种较冷的物体——行星。当新生恒星将剩下的“比萨面团”吹跑之后,行星就会显露出它们的面孔。由于所有的旋转(物理学家称之为“角动量”)都来自最初那团气体云的旋转,所以,不出所料,太阳系的所有行星都往相同的方向公转(如果你从北极的方向往下看,为逆时针方向),与太阳每月自转一周的方向正好相同。
1700916739
[ 上一页 ]  [ :1.70091669e+09 ]  [ 下一页 ]