打字猴:1.70091675e+09
1700916750 研究了太阳系的形成,我们已经把时间的开端往前推进到45亿年前。那时,太阳系诞生于一团因万有引力而坍缩的分子云中。但正如菲利普的同学所问:这团分子云又是从哪里来的呢?
1700916751
1700916752 星系的形成
1700916753
1700916754 有了望远镜、铅笔和计算机的武装,天文学家提供了令人信服的答案,尽管一些重要的细节还需要进一步探讨。我们知道,引力和压力之战让太阳系形成了像比萨一样的圆盘形状。其实,这种战役在更巨大的尺度上依然在上演——比太阳重数百万倍甚至数万亿倍的分子云被压缩成了“超级大比萨”。这种坍缩极其不稳定,所以它的中心并不会像打了鸡血一般诞生“超级巨星”,周围也不会形成“超级行星”。与之不同,它会碎成无数片小一些的气体云,这些小气体云各自孕育出各自的太阳系——于是,星系诞生了。我们的太阳系,只是银河系中数千亿个比萨形状的恒星系之一。太阳系大约在银河系距中心一半的位置,几亿年才绕着银河系旋转一圈(见图1-2)。
1700916755
1700916756 有时候,星系之间会发生碰撞,就像宇宙版的大撞车。这听起来很恐怖,但实际上并不可怕,因为几乎所有恒星都会从空隙里穿越过去,而不会迎面撞在一起。相撞后,万有引力会将大部分恒星聚在一起,形成一个更大的崭新星系。银河系和我们最近的邻居——仙女座星系都呈比萨形,伸展着美丽的悬臂,如水中的旋涡一般,所以被称为旋涡星系(spiral galaxies,见图1-2)。当两个旋涡星系相撞时,一开始会混乱不堪,后来会逐渐形成一团圆形的恒星群,被称为椭圆星系。这正是我们最终的命运,因为我们的银河系正在向仙女座星系迎头撞上去,大约几十亿年后会相撞——不知道我们的后代会不会把这个新星系称为“银女座”。我们唯一能确定的是,它一定是一个椭圆星系。望远镜拍下了许多星系的相撞,展现了这个过程的不同阶段,都基本符合我们的理论预测。
1700916757
1700916758 如果今天的星系都是由小星系融合而成,那么最初的小星系究竟有多小呢?这个问题将把我们对时间的追溯往前再推进一大步。说实话,这也正是我亲自参与的第一个研究项目。项目中,我负责弄清楚气体云中的化学反应,它生成了辐射热能的分子,从而降低了压力。但是,每次我以为自己算完了,都会发现分子式存在严重的问题,导致后面的所有计算都失效,必须从头再来。
1700916759
1700916760 我跟着我的研究生导师乔·西尔克(Joe Silk)在这个问题上纠结了整整4年,我实在沮丧透了。我甚至去定制了一件T恤,上面印着“我讨厌分子”以及我的大敌——氢分子,上面有一个大大的红叉,就像禁烟标志一样。但接下来,幸运女神降临了——我去慕尼黑做博士后时,遇到了一个友好的大学生叫汤姆·艾贝尔(Tom Abel),他刚刚完成了一段史诗般的计算,包含了我所需要的所有分子。他作为共同作者加入了我们的团队。24小时后,大功告成!据我们预测,最早期的星系“只”比太阳重100万倍。我们的运气真是太好了,因为当年的这些发现与汤姆如今用更精密的计算机模拟出来的结果仍然基本相符——他现在正在斯坦福大学当教授呢。
1700916761
1700916762 永恒的运动,宇宙的自然状态
1700916763
1700916764 地球就像一个舞台,上演着一幕伟大的戏剧——斗转星移,生命一代又一代降生到人间,它们相互影响,度过一生,然后走向死亡。这幕地球戏剧始于45亿年前。然而,我们却发现,地球只是一幕更宏大的宇宙戏剧中的一小部分。那里就像一个宇宙级别的生态系统,一代又一代的星系诞生、相互影响、最终走向死亡。那么,在此之上,是否存在更高级别的戏剧,一代代宇宙在其中诞生和死亡呢?更具体地说,我们的宇宙是否存在一个开端呢?如果有,是什么时候呢?
1700916765
1700916766 星系为什么不会坍缩?这个问题将再次把我们对时间的认知往前推进一步。我们知道,月亮不会掉下来是因为它旋转得极快。宇宙中充满了星系,星系的运动方向各不相同,而且并不都是绕着我们旋转,很显然,月球的理由不适用于它们。如果宇宙是永续永存的,并且本质上是静止的,那遥远的星系相对我们来说就不会运动得太快。那它们为什么不会最终坠向我们,就像你突然让月球停止在轨道上,它一定会落向地球一样呢?
1700916767
1700916768 在牛顿的时代,人们当然不知道星系的存在。布鲁诺通过冥思苦想,得出宇宙是永恒静止的,里面均匀地布满了恒星这一结论。如果你认同布鲁诺,那你至少有一个半生不熟的理由,不用担心宇宙会塌到头上,那就是,根据牛顿定律,每颗恒星在每个方向都会受到同样强大的万有引力(实际上是无穷大),因为每个方向上都有无数颗恒星,这些引力相互抵消,所以恒星可以保持静止。
1700916769
1700916770 1915年,这个理由被爱因斯坦的新引力理论推翻了,这就是广义相对论。爱因斯坦发现,永恒静止、均匀布满恒星的宇宙模型与他的新引力方程不相符。那么,他做了什么呢?毫无疑问,爱因斯坦继承了牛顿大胆推测的精神,一边探索符合自己方程的宇宙形态,一边在观测中寻找证据。然而颇具讽刺意味的是,爱因斯坦作为人类历史上最具有创造精神、最敢问别人之不敢问、最敢挑战权威的科学家,却不敢质疑最大的权威——他自己,以及他对永恒不变的宇宙的痴迷。结果,他修改了自己的广义相对论方程,在其中加入了一个额外的常数,使宇宙变得永恒且稳定。他后来把这个举动称为自己一生中最大的错误。更加具有讽刺意味的是,现在看来,这个宇宙常数竟可能真的存在,只不过是以暗物质的形式存在(我们在后面会讨论到),并且取值也不同,因此不能以此来保持宇宙的恒常稳定。
1700916771
1700916772 后来,终于出现了一个人,有信心聆听爱因斯坦方程中的低吟。这个人就是俄罗斯物理学家、数学家亚历山大·弗里德曼。他计算出了最一般情况下的均质宇宙解,发现了一个令人震惊的事实——绝大部分解都不是静止的,而是随着时间而变化!爱因斯坦的静止宇宙不但只是一个特例,而且本身也不稳定,不能保持很长时间。正如牛顿证明太阳系的自然状态就是永恒运动一样(比如地球和月球不可能永远保持静止),弗里德曼的研究揭露出,宇宙的自然状态也是永恒运动的。
1700916773
1700916774 然而,究竟是怎样的运动呢?弗里德曼发现,在所有的可能性中,宇宙最自然的状态有两种——不是在膨胀,就是在收缩。如果宇宙在膨胀,这意味着所有分开的物体都在相互远离,就像正在膨胀的麦芬蛋糕顶上的巧克力片一样(见图2-2)。如果这是真的,它们过去的距离一定比现在更近。实际上,在弗里德曼关于膨胀宇宙的最简解中,过去确实存在一个时间点,那时,我们今天所看到的万物都位于同一个地方,因此拥有无限大的密度。换句话说,我们的宇宙有一个开端,在无限的密度中发生了一场灾难式的爆炸——宇宙大爆炸。
1700916775
1700916776 弗里德曼的大爆炸理论是一记振聋发聩却沉默无语的惊雷。虽然他的论文发表在了德国最有威望的物理学期刊上,连爱因斯坦等人都对其进行了讨论,但却被大多数人忽略了,并最终被埋没,对当时的主流物理世界观没有产生任何影响。忽视伟大的见解,是宇宙学的传统(其实在整个科学界都这样)——正如我们前面说到的阿里斯塔克斯日心说、布鲁诺的遥远太阳系一样。在后面的章节中,我们还将遇到很多这样的例子。
1700916777
1700916778
1700916779
1700916780
1700916781 图2-2 遥远的星系相互远离,就像正在膨胀的麦芬蛋糕顶上的巧克力片(左图)——在它们中的每一颗看来,其他巧克力都在后退,速度与距离成比例。但是,如果只有空间在膨胀,像蛋糕的面饼一样,那么星系和空间之间就没有相对运动,空间把所有的距离都均匀地拉大(右图),就像把尺子上的刻度单位从毫米改成了厘米一样。
1700916782
1700916783 我认为弗里德曼被学术界忽视的一大原因是,他超越了他所处的时代——1922年的宇宙观仅限于银河系(实际上,也只是银河系中能被我们看到的有限部分),而银河系并没有膨胀,数以千亿的恒星被万有引力束缚在轨道上,那宇宙膨胀也无从说起。这正好能回答第1章开头提出的问题9:“银河系在膨胀吗”。弗里德曼的膨胀理论只适用在极大的尺度。在这个尺度上,可以完全忽略物质碰撞形成星系和星系团的过程。在前文图1-2中可以看到,在极大的尺度上(比如1亿光年的尺度),星系的分布变得相当均匀,暗示着弗里德曼的均质宇宙是适用的,并且所有距离遥远的星系都在相互远离。但正如我们之前所讨论的,那时候哈勃还没有发现其他星系呢,他到1925年才建立起有关星系的理论,而那是在弗里德曼发表膨胀宇宙理论的3年之后!真正到了3年之后,弗里德曼的机会终于来了。然而不幸的是,正是在这一年,伤寒夺去了他年仅37岁的生命。
1700916784
1700916785 我认为,弗里德曼是宇宙学历史上最伟大的无名英雄。写到这里,我忍不住把他1922年的论文翻出来读了一遍。论文最后,他举了一个例子,例子中的宇宙质量为太阳的5亿兆倍。据此,他计算出这个宇宙的寿命约为100亿年——竟和我们宇宙的年龄差不多!此时,距离人们发现其他星系还有好几年,不知弗里德曼从哪里得到的这些数字。但对一篇伟大的论文来说,这个结尾再合适不过了。
1700916786
1700916787 我们的宇宙正在疯狂膨胀
1700916788
1700916789 5年后,历史再次重演。一位MIT的研究生,同时也是比利时神父的天体物理学家乔治·勒梅特(Georges Lema tre),再一次发表了大爆炸理论。但是他并不知道弗里德曼已经发表过这个理论,于是“重新”发表了一次。结果,它再一次被学术界忽视了。
1700916790
1700916791 最终让大爆炸理论引起人们注意的不是一个新研究,而是一次新观测。埃德温·哈勃发现系外星系后,人们很自然地想测出它们在空间中的分布和运动情况。我在前面章节里提到过,物体朝我们而来或离我们而去的速度通常很容易测量,因为这种运动会导致它的光谱线发生移动。彩虹中,频率最低的是红光,所以,如果星系正在离我们远去,它的所有光谱线将发生红移,也就是向红色的一端移动。远去的速度越快,红移的程度越高。如果星系正在朝我们而来,它将发生蓝移,光谱线移向蓝色的一端。
1700916792
1700916793 假如漫天的星系只是在随机地乱动,我们会发现,一半星系在红移,另一半在蓝移。但令人吃惊的是,哈勃发现,几乎所有的星系都在红移。为什么它们全都离我们而去呢?难道它们不喜欢我们吗?是我们说了什么不好的话吗?不仅如此,哈勃还发现,星系与我们的距离(d)越远,远离我们的速度(v)就越快,并遵循下面这个公式:
1700916794
1700916795 v=Hd
1700916796
1700916797 这个公式被我们称为“哈勃定律”,其中的H是一个常数,被称为“哈勃常数”。在哈勃1929年发表的学术论文中,这个常数用一个谦逊的字母“K”表示。有趣的是,乔治·勒梅特在那篇被忽视的论文中,也预测过膨胀宇宙会出现类似的现象——如果一切都在膨胀,一切都在相互远离,那越远的星系就远离得越快。
1700916798
1700916799 如果一个星系正在远离我们,它过去一定与我们十分靠近。但那又是多久以前呢?如果银行抢劫犯跳上一辆车,逃离犯罪现场,你只需要用距离除以车的速度,就能判断出抢劫发生的时间。如果我们用同样的方法计算后退的星系,根据哈勃定律,每个星系的“案发时间”都是d/v=1/H!用现代观测方法,我们知道1/H≈140亿年。所以,哈勃的发现意味着在140亿年前的某一刻,发生了一件相当不同凡响的事——大量物质挤成一堆,密度高得不得了。但是,正如车速不是一成不变的一样,宇宙的膨胀也可能有快有慢。考虑到这个,我们需要对结论进行修正。今天,我们用弗里德曼方程和现代观测方法发现,需要修正的幅度非常小,只占一点点比例——原来,大爆炸之后,我们的宇宙用了一半的时间来减速膨胀,又用了一半的时间来加速膨胀,所以误差就被抵消了。
[ 上一页 ]  [ :1.70091675e+09 ]  [ 下一页 ]