打字猴:1.700917161e+09
1700917161 图3-6 宇宙中物质的聚集情况可以用这个频谱曲线来表示。横坐标10亿光年处对应的曲线值大致等于10%,意思是说,当你测量宇宙中半径为10亿光年的球形空间内的质量时,你测得的结果会根据这个球形空间在宇宙中的不同位置而变化,变动区间为10%。和我刚开始工作时不同,现在有了高度精确的测量结果,并且它们都符合理论预测。上图中,你可以看到,5个不同实验的测量结果都相互吻合,尽管它们的数据、团队和方法大相径庭。在我看来,这是一件非常了不起的事情。
1700917162
1700917163 最早的三维星系图实在太小了,没办法进行分析。我的同事迈克尔·福格勒(Michael Vogeley)曾经给了我一张图,其中汇集了到1996年为止最全面的测量结果。我问他为什么不在其中加上误差棒来标注测量的不确定度,他说:“因为我不相信它们。”他的怀疑态度事出有因:有些团队声称自己比其他团队强大10倍,所以,他们不可能都是对的。
1700917164
1700917165 全世界各地的研究团队逐渐绘制出更大的三维星系图,并把它们共享到互联网上。我觉得,既然这么多人花了这么多心思在绘制天图上,那必须有人来好好分析这些数据,才对得起他们。所以,我和朋友安德鲁·汉密尔顿组建了一个团队,采用我们在分析宇宙微波时所用的信息论方法来测算星系频谱图,帮他们添砖加瓦。
1700917166
1700917167 安德鲁是英国人,他是个不可救药的开心果,脸上总挂着淘气的微笑,他也是我最喜欢的合作者之一。有一次,我、安德鲁、韦恩·胡(Wayne Hu)和新剃了光头的大卫·霍格(David Hogg)约在一个餐厅见面。我迟到了,于是询问女服务员有没有看见三个人,分别长得像演员罗伯特·雷德福(Robert Redford)、李小龙和侦探科杰克(Kojak),她想了想,笑着说:“罗伯特·雷德福在那边……”
1700917168
1700917169 我和安德鲁分析了各种各样的三维天图,它们的尺度日渐增大,并且都有着令人费解的名字,比如IRAS、PSCz、UZC和2dF,分别包含有5 000、1.5万、2万和10万个星系。安德鲁住在科罗拉多州,我们通过电子邮件和电话讨论了无数次关于频谱测算中的艰难之处。我们还在阿尔卑斯山和落基山脉一起远足,期间探讨的话题也都离不开这个。
1700917170
1700917171 SDSS以全数字化成像和细致的质量控制为基础,绘制出了最大、最清晰的天图,所以我认为它完全值得用最小心翼翼的态度来分析。由于担心成为薄弱环节,我花了很多年的时间来处理许多被不少人认为是最无聊的事情。这个项目的推动者之一吉尔·克纳普教授(Jill Knapp),是吉姆·冈恩的妻子,她每周都会在普林斯顿大学召开例会。每到那时,她就会用很多好吃的食物来招待我们,与此同时,我们在分析室里努力辨认所有构架,试图找出处理它们的方法。比如,某一个特定的方向上能绘制出多少星系取决于很多因素,例如,拍摄那天的天气如何,有多少星际尘埃挡在中间,光纤挡住的可见星系所占的比例等。老实说,这些事真的很枯燥,但我从许多人那里获得了极大的帮助,尤其是迈克尔·斯特劳斯教授(Michael Strauss)和他当时的研究生麦克·布兰顿(Mike Blanton)。与此同时,我还常需要让计算机花几星期时间,无穷无尽地循环计算多达几个太字节的矩阵数表,还要时刻盯着算出来的混乱图形,调试代码,并一遍又一遍地重试。
1700917172
1700917173 就这样过了6年,2003年,我终于提交了两篇论文,每一篇的共同作者都超过了60人。我的一生中,从未有过这样如释重负的感觉——也许写这本书除外。第一篇论文考量了图3-6中的星系频谱图,第二篇则将其与微波背景频谱图结合起来,从中得出一些宇宙参数的度量值。我将一些重点列在了表3-1中;在此我更新了数据,采用了其他人的最新成果,然而,尽管不确定性在下降,但数值并没有太大变化。(表3-1显示,将宇宙微波背景天图与三维星系天图结合起来,我们能测算出一些关键的宇宙参数,误差率仅在几个百分点。)在我上研究生时,人们为宇宙年龄是100亿年还是200亿年而争论得不可开交,对此我到现在还记忆犹新。而现在,我们争论的焦点已经变成了宇宙年龄究竟是137亿年还是138亿年!精密宇宙学的时代终于来临了,我因自己能参与其中小小的一部分而感到兴奋和荣幸。
1700917174
1700917175 表3-1 对一些关键宇宙参数的测算值及误差率
1700917176
1700917177
1700917178
1700917179
1700917180 对我个人来说,幸运女神也随之降临——2004年秋天,我因MIT的终身教职而接受了评估。我被告知,要想获得这个职位,我需要“一个全垒打或者几个二垒安打”。正如音乐家们需要有一张作品的销售前十排行榜一样,我们科学家也需要类似的东西——引用列表。每次有人引用你的论文,就好像在你的帽子上添了一根羽毛。引用这档子事儿有时候很随机,也很愚蠢,人都有从众的倾向,因为一些懒惰的作者会直接抄袭别人的引文,根本连读都不读一下原文。但是晋升委员会还是会把引用率纳入考量,就像棒球教练会考虑击球率一样。就在我祈祷好运时,这两篇论文突然间一跃成为我有史以来引用率最高的论文,其中一篇甚至一度飙升为2004年物理学界引用最多的论文——尽管占据榜首的时间并不长,但对终身教职来说已经足够了。我的好运悄无声息地持续着。《科学》杂志决定将“2003年科学突破”之首颁发给宇宙学,因为宇宙学终于变成了一门可以信赖的科学,并提到WMAP项目和SDSS的分析结果功不可没。
1700917181
1700917182 平心而论,这些数据根本算不上什么突破,只是近年来全球宇宙学家共同推进的一个缓慢而坚定的进步过程。我们的工作算不上具有革命性,也并没有什么令人惊讶的发现。相反,我们只是简单地让宇宙学变得更加可信,让它成长为一种更成熟的科学。对我而言,最大的惊喜就是没有惊喜。
1700917183
1700917184 苏联著名物理学家列夫·朗道曾说过:“宇宙学家经常会犯错,但他们从不优柔寡断。”有太多例子可以证明这句话了——阿里斯塔克斯所声称的太阳距离比实际近8倍,哈勃声称的宇宙膨胀速度比实际快7倍。好在这种野蛮生长的状态已经结束了——我们看到了太初核合成和宇宙聚集对原子密度的各自预测完美吻合,Ia型超新星和宇宙聚集对暗能量密度的分别测算也相互印证。在这些交叉检验中,我最喜欢的是图3-6中展现的那个——图中,我画出了5个不同的测量结果所对应的频谱曲线,尽管它们各自使用的数据、测量团队、所使用的方法有着天壤之别,但你可以从图中看到它们彼此是多么吻合。
1700917185
1700917186 我们宇宙的终极地图
1700917187
1700917188 还有很多未知区域
1700917189
1700917190 现在,我正坐在我的床上,手上敲着这些字,心里想着宇宙学的变迁史。当我还在做博士后时,我们常常谈论,如果能获得准确的数据并最终精确地算出宇宙参数的值,那将是一件多酷的事情。而现在,我们终于可以说:“我们做到了。”答案就在表3-1中。那么,下一步要做什么呢?宇宙学是否已走到尽头?我们宇宙学家是不是该换工作了?
1700917191
1700917192 我的答案是:“不!”为了说明宇宙学里还有很多有趣的领域尚未被探索,让我们擦亮眼睛看一看宇宙学家的成就有多么微不足道吧——我们只是将自己的无知参数化了而已,因为在表3-1中的每一个参数背后,都隐藏着无人知晓的奥秘。比如:
1700917193
1700917194 ●我们已经测出了暗物质的密度,可是暗物质到底是什么?
1700917195
1700917196 ●我们已经测出了暗能量的密度,可是暗能量到底是什么?
1700917197
1700917198 ●我们已经测出了原子的密度(1个原子对应20亿个光子),但是这个数量是怎么产生的?
1700917199
1700917200 ●我们已经测量了种子起伏的水平大约为0.002%,但是它们从何而来呢?
1700917201
1700917202 随着数据越来越精确,我们将能越来越精确地测算表3-1中的数值,小数点后的位数也会越来越多。但是,比起把旧参数变得更精确,我更想用它们来测量新的参数。比如,我们可以尝试着测量暗物质和暗能量除密度之外的其他性质。暗物质有压力吗?有速度吗?有温度吗?这将阐明它的本质。暗能量的密度真如目前看起来的那样绝对恒定吗?如果我们能测量出暗能量随时间发生着轻微的改变,或者在宇宙中不是绝对均匀分布的,这将是一个关键的线索,让我们更能理解它的本质,以及它将如何影响我们宇宙的未来。种子起伏除0.002%的振幅外,还有其他性质和模式吗?这将让我们得以窥见宇宙的起源。
1700917203
1700917204 要如何解决这些问题,我真的想了很多很多,但有趣的是,它们的解决方案都一样——绘制宇宙的地图!特别是,我们应该尽可能地用三维方法来绘制。目前,我们能绘制的最大范围是光线能有足够的时间到达地球的宇宙区域。从本质上说,这个区域就是等离子体球(见图3-7左图)的内部。我们已经探索了等离子体球,但正如你在图3-7中所看到的那样,这个球内部超过99.9%的区域都没有被我们研究过。你还能看到,迄今为止最雄心勃勃的三维星系图计划——SDSS只覆盖了一小块地方,只能算宇宙的“后院”,我们的宇宙实在是太庞大了!如果我把天文学家发现的最远星系加到这张图中,它们距离边界还有一半的距离。所以,这张图里的内容还太少,距离一张有用的三维天图,我们还有很长的路要走。
1700917205
1700917206
1700917207
1700917208
1700917209 图3-7 在我们的可观测宇宙中(左图),绘制了天图的部分是如此之小(中图),所占的比例还不到0.1%。正如1838年的澳大利亚(右图),那时我们只沿着澳大利亚的轮廓描绘了一条细细的边界,而内部的绝大部分地区都是无人涉足过的处女地。在中图里,圆圈附近的区域是等离子体(我们今天看到的宇宙微波背景辐射只是来自它暗淡的内边缘),而圆心部分那个娇小玲珑的小结构,则是迄今为止最庞大的三维星系图——SDSS天图。
1700917210
[ 上一页 ]  [ :1.700917161e+09 ]  [ 下一页 ]